Grade 7

Units 1-4

Unit 1: Integers

Unit 2: Fractions and Decimals

Unit 3: Expressions Unit 4: Equations

UNIT 1

InTEGERS

	Date		Lesson
			First Day of School
		1	Order of Operations
		2	Introduction to Integers and Absolute Value
		3	Adding Integers
		4	Subtracting Integers
		5	Quiz - Mixed Adding and Subtracting Integers
		6	Multiplying and Dividing Integers
		7	Evaluating Expressions
		8	Word Problems
			Review
			Test

Vocabulary

Operations: \qquad

Exponents: \qquad

Order of Operations: \qquad

Use the acronym PEMDAS to help you determine the order.
P \qquad
M \qquad
D \qquad

A
S

Examples: Simplify the following problems

1) $10-2+3$
2) $(7-5) \cdot 6+4$
3) $15-6 \div 2 \cdot 3$
4) $27 \div 3-5$
5) $10-3 \cdot(5-2)$
6) $3^{2}+4 \cdot 3$
7) $9-14 \div 2+3$
$2 \cdot 6+3$
8) $\frac{11-6}{11}$

Try These: Simplify the following problems

1) $5-2+7$
2) $2+(3-2)$
3) $12+3 \cdot 2$
4) $2^{2}-12 \div 6-2$
5) $24 \div 2 \cdot 6$
6) $10+8 \div 2$
7) $(10+8) \div 2$
8) $\frac{5 \cdot 6+2}{12-4}$

Simplify the following expressions:

1) $12-8 \div 2$
2) $(3+4) \div 7$
3) $(8-4) \div 2$
4) $6 \cdot(4-1) \div 2$
5) $4^{2}+(5-2)^{2}$
6) $5^{2}-3^{2}$
7) $4^{2}-12 \div(4-2)$
8) $\left(2^{3}-2\right) \div 3-2$
9) $3 \cdot(5-2)$
10) $56 \div(7 \cdot 2)+1$
11) $\frac{5 \cdot 4+2}{17-2 \bullet 3}$
12) $10-4 \cdot(3-1)$
13) $8 \div 4+2 \cdot 3$
14) $14 \div(7-5) \cdot 3$
15) $20 \div 4+3 \cdot 6--12$

Extended Response:

16) Sally was given the problem $3+5 \times 10$. Her answer to the problem was 80 . Is this correct? If not, explain what she did wrong.

Vocabulary

Integers: \qquad
Additive Inverse: \qquad

Absolute Value: \qquad

Part I: Introduction to Integers

Examples:

1) Plot the following integers on the number line:
[A] 3
[B] 5
[C] -4
[D] -1
[E] 0
[F] $-\frac{1}{2}$
[G] $5 \frac{3}{4}$

Write an integer to represent each situation:
2) $\$ 5.00$ off the original price
3) 2 degrees above zero
4) 8 yard gain
5) 4.5 yard loss
6) $\$ 25$ deposit
7) $\$ 15.00$ withdrawal
8) 42 degrees below zero
9) Income of $\$ 500$
10) $\$ 35$ deficit
11) 450 feet below sea level

$<$	Less than
\leq	Less than or equal to
$>$	Greater than
\geq	Greater than or equal to

12) Compare using $<$, $>$, or $=$ to make each inequality true:
$[\mathrm{A}]-12 \bigcirc 4$
$[B]-5 \bigcirc-6$
$[C]-10 \bigcirc 8$
[D] $5 \frac{3}{4} \bigcirc 5 \frac{1}{3}$
$[E]-6 \bigcirc 6$
$[F]-7 \bigcirc-6$
$[\mathrm{G}]-4 \bigcirc-5$
[H] $9 \bigcirc 9$

Order the following integers from least to greatest:
13) $\{-3,-500,43,1,0,-73,300\}$
14) $\{0,-20,50,3,37,-25,1000\}$

Name the additive inverse of each integer:
15) -7
16) 23
17) 0

PART II: Absolute Value

Absolute Value Rules:

1) Absolute value represents the DISTANCE from zero.
2) Absolute value will ALWAYS be a POSITIVE number.
3) Treat the absolute value symbol as parentheses. You must do what is INSIDE FIRST!!!

Examples:

1) What is the distance from -3 to 0 ?
2) What is the absolute value of -3 ?
3) What is the distance from 3 to 0 ?
4) What is the absolute value of 3 ?
5) $|-5|$
6) $|9|$
7) $|-1|$
8) $|-100|$
9) $|400-100|$
10) $|-3|+|-1|$
11) $|-1|+|-3|$
12) $|3-1|$
13) $|3|+|-1|$

Try These:

14) Which of the following is the largest integer?
a) -300
b) 1
c) 250
d) 0
15) What is the absolute value of 0 ?
16) The temperature in Alaska at noon is -12°. Use the number line to answer the following questions
[A] How many degrees warmer is -9° ?
[B] How many degrees colder is -15° ?
[C] At midnight, the temperature had dropped 5°. What is the temperature now?
[D] How many degrees would the temperature at noon have to increase to get to 0° ?

Write an integer for each situation.

1) 6-yard loss
2) 8-yard gain
3) $\$ 5$ off the original price
4) 2° above zero
5) Loss of 15 pounds
6) $\$ 35$ withdrawal
7) $\$ 75$ deposit
8) 1 mile above sea level
9) 20 ft . below sea level
10) A stock opened at $\$ 7$ per share on Monday.
[A] The stock's value increased $\$ 3$ on Monday. What is the value now?
[B] On Tuesday, the value of the stock decreased by $\$ 5$. What is the stock's value now?
[C] By the end of the week, the value of the stock decreased by $\$ 9$ from its original value. What is the value at closing on Friday? Use a number line to justify your answer.

Compare using <, >, or $=$ to make each inequality true:
11) $-3 \bigcirc-4$
12) $-7 \bigcirc 10$
13) $-1 \bigcirc-15$
14) $-9 \bigcirc-10$
15)
5

16) $-12.9 \bigcirc-12.6$

Order the integers in each set from least to greatest.
17) $\{-3,5,-7,-2,0\}$
18) $\{5,400,-400,-350,-35\}$

Name the additive inverse of each integer:
19) -7
20) 23
21) -400
22) -1
23) 3
24) The absolute value of two numbers that are additive inverses will \qquad be the same.
a) always
b) sometimes
c) never

Compare using <, >, or $=$ to make each inequality true.
25) $|-12| \bigcirc 4$
26) $|-5| \bigcirc|-6|$
27) $|-10| \bigcirc 10$
28) $|15-4| \bigcirc-13$
29) $|-6| \bigcirc|6|$
30) $|-7| \bigcirc-6$
31) $|-4| \bigcirc|-5|$
32) $9 \bigcirc|10-1|$

Order the integers in each set from least to greatest.

33) $\{-3,4,|-2|,|5|, 0\}$
34) $\{-1,-4,|-4|,|0|, 5\}$

Evaluate

35) $|5-3|$
36) $|6|-|2|$
37) $|-3|+|-3|$
38) $|0-7|$
39) $-|6|+9$
40) $|12|-3+|0|$

CHALLENGE

Decide if each of the following is always true, sometimes true, or never true for all integer values of x.
[a] $|x|=x$
[b] $|-x|=x$
[c] $-|x|=x$
[d] $|x|=|-x|$

Vocabulary

Sum: \qquad
Commutative Property: \qquad

Addition with a number line:

For Example:

1) $-1+3$

Steps: 1. Start at -1 on the number line
2. Move 3 spaces in the positive direction
2) $-1+(-3)$

Steps: 1. Start at -1 on the number line
2. Move 3 spaces in the negative direction

Alternate Method:

Same Signs Add and Keep

Different Signs

Subtract and Keep the sign of the larger number

Examples:

1) $5+2$
2) $-2+-9$
3) $-8+1$
4) $6+-4$
5) $6+(-8)$
6) $-9+(-9)$
7) $-5+5$
8) $-6+3$
9) $-1+-2+8$
10) $12+(-6)+(-8)$

Try These:

1) $-2+4$
2) $(-5)+(3)$
3) $-2+(-5)$
4) $-3+(7)$
5) $-6+7$
6) $-3+-4+4$
7) $-5+(-1)+6$
8) $2+(-5)+5$
9) $-3+(7)+3$
10) $(-7)+-7+7$

KEEP IN MIND: If you are adding a positive, the number should get bigger (move in positive direction)
If you are adding a negative, the number should get smaller (move in negative direction)

1) $-30+20$
2) $40+-10$
3) $73+(-13)$
4) $-120+20$
5) $-120+(-20)$
6) $-47+(-3)$
7) $-78+80$
8) $38+(-24)+14$
9) The temperature in Vermont is recorded at -12°. At the same time, the temperature in New York is 15° warmer. What is the temperature in New York?

More Examples:

10) $5+-9$
11) $-2+7$
12) $10+-1$
13) $-8+10$
14) $7+(-3)$
15) $-12+(-8)$
16) $-44+14$
17) $-15+(-5)$
18) $-9+9$
19) $53+(-28)$
20) $-3+-4$
21) $-10+80$
22) $-5+-5+-5$
23) $10+-4+5$
24) $-4+(-4)+20$

Review (Multiple Choice):

25) Which of the following integers represents the greatest negative integer?
a) -4
b) -1
c) 400
d) -400
26) Which of the following integers represents the distance from -3 to 5 ?
a) 5
b) 2
c) 8
d) -8
27) What is the absolute value of -7 ?
a) 7
b) -7
c) 14
d) -14
28) $-2+-4$
29) $2+10$
30) $-7+8$
31) $12+(-4)$
32) $-17+10$
33) $-11+-4$
34) $-15+10$
35) $20+(-8)$
36) $-5+(-5)$
37) $8+(-4)+6$
38) $-3+-6+4$
39) $-2+-1+-9$
40) $8+(-10)+2+(-5)$
41) $12+(-26)+4+26$
42) $12+(-12)+47$
43) A submarine is 350 feet below sea level, over the course of the next three hours, the submarine rose 120 feet. What is the submarine's distance below sea level?
44) An elevator starts on the ground floor. If it goes up 3 floors, then down 2 floors, and finally up 6 floors, what floor is it on?
45) The sum of -7 and what number is 2 ?
46) The temperature in city A is -35°. If the temperature in city B is the additive inverse of -35°, how much warmer is city B ?

Lesson 4

Vocabulary

Difference:

Subtraction with a number line:

To subtract an integer, add its opposite (inverse)

For Example:

1) $\mathbf{- 1}-\mathbf{3}$

Steps:

1. Start at -1 on the number line
2. Move 3 spaces to the
2) $-1-(-3)$

Steps: 1. Re-write the problem using addition
2. Start at -1 on the number line
3. Move 3 spaces to the \qquad

Alternate Method:

Same Signs

Add and Keep

Different Signs

Subtract and Keep the sign of the larger number

Examples:

1) $-2-4$
2) $5-(-3)$
3) $-2-(-5)$
4) $-3-(7)$
5) $-6-7$
6) $-3-(-4)-4$
7) $-5-(-1)+6$
8) $2-(-5)-5$
9) $-3-(4)+3$
10) $-12-(-12)$
11) The temperature in Chicago is 38°. It is 40° colder in North Dakota. What is the temperature in North Dakota?
12) The temperature in Maine is -21°. At the same time, the temperature in Texas is 79°. What is the difference in the two temperatures?

KEEP IN MIND: When you subtract a negative you are really adding. $* *(-\mathbf{1 0})=+\mathbf{1 0}$

Try These:

14) $-30-20$
15) $40--10$
16) $73-(-13)$
17) $-120-20$
18) $-120-(-20)$
19) $-47-(-3)$
20) $-78-80$
21) $38-(-24)+14$
22) The temperature in San Jose is recorded at 82°. At the same time, the temperature in Seattle is 95° colder. What is the temperature in Seattle? (Draw a picture of a thermometer to help.)
23) The temperature in Michigan is -6°. At the same time, the temperature in New Mexico is 94°. What is the difference in the two temperatures? (Draw a picture of a thermometer to help.)
24) Michael is 8 years old. His sister Anna is 7 years older than him, and his brother Rocco is 11 years younger than his sister. How old is his brother?
25) $-4-5$
26) $5-(-3)$
27) $-9-2$
28) $-10-(-5)$
29) $-12-(-3)$
30) $8-4$
31) $7-10$
32) $-15-(-1)$
33) $20-32$
34) $-9-(-6)$
35) $-3-5+8$
36) $-3-3-3$
37) Write $8-2$ as many ways as you can.
38) \qquad
39) \qquad
40) \qquad
Can you think of anymore?
41) Your friend is having trouble simplifying $20-(-38)$. Write an explanation to help your friend solve the problem.
\qquad
\qquad
\qquad
42) Ryan has $\$ 75$ in his bank account. He withdraws $\$ 48$, and then deposits $\$ 12$. What is Ryan's new balance?

REvIEW: SHOW ALL WORK

16) $-|-3|+|4|$
17) $|-4|+|3|$
18) $|-4+3|$
19) $|-a|$

Vocabulary Review

Sum: \qquad

Difference: \qquad

Additive Inverse: \qquad

Examples - Use the commutative property and the inverse property to simplify:

1) $30+45+-30$
2) $-53+7+53$
3) $125+(-73)+125+73$
4) $21+47+(-47)+-4$
5) $34+21+-34$
6) $\left(-\frac{5}{8}\right)+(-72)+\left(\frac{5}{8}\right)$
7) $83+-83+27+-27$
8) $-20+30+(-20)+90$
9) $432+68+11+-500$

Try These:

1) $3+10$
2) $-7+5$
3) $-5-6$
4) $8+(-4)$
5) $-15+2$
6) $-8-8-8$
7) $18-9$
8) $25+(-13)$
9) $-6+(-6)$
10) $-7+12$
11) $-16+16$
12) $-12+7+(-5)$
13) $9+(-15)+3+(-5)$
14) $14+(-26)+(-13)+7$
15) $15-(-2)+2$
16) $6+8$
17) $-7+(-8)$
18) $-6+5$
19) $-2+14$
20) $-7-6$
21) $-9-12$
22) $-15-(-10)$
23) $22+(-8)$
24) $-3+(-3)$
25) $11+(-6)+6$
26) $-3+(-8)+4$
27) $-2+-2+-2$
28) $-4-3-2$
29) $13+(-13)+4+(-4)$
30) $18-(-6)$
31) $-2+-6$
32) $-12-6$
33) $-9+2$
34) $-80+(-16)$
35) $-26-(-12)$
36) $-30+(-30)$
37) $-15+16$
38) $18+(-10)+3-(-5)$
39) $-11+-3$
40) $-5-6-7-8$
41) $-13+-6+8$
42) $-70-10+-9$

Vocabulary

Product: \qquad
Quotient: \qquad
Multiplicative Inverse: \qquad
Undefined: \qquad

Rules:

1) Count the negative signs

Odd number of negative signs - Answer Negative
Even number of negative signs - Answer Positive
2) Multiply or Divide

Any number multiplied by zero is \qquad

Any number divided by zero is \qquad

Examples:

1) $-5 \cdot-2$
2) $-8 \cdot 4$
3) $8 \cdot-4$
4) $-25 \div 5$
5) $25 \div-5$
6) $(7)(0)$
7) $\frac{8}{0}$
8) $\frac{-24}{8}$
9) $(-1)^{4}$
10) $-1 \cdot-3 \cdot-4 \cdot 2$

Try These

1) $-15 \cdot-2$
2) $(-3)(10)$
3) $56 \div-7$
4) $-2 \cdot 1 \cdot-3$
5) $-2 \cdot-6 \cdot 2 \cdot-1$
6) $(-1)^{3}$
7) $(-1)^{246}$
8) $\frac{-81}{-9}$
9) $-12 \div-4$
10) $\frac{28}{-7}$
11) $-2(-3)$
12) $-5 \cdot 5 \cdot 2$

Multiply:

1) $(-4)(3)$
2) $(-5)(-8)$
3) $-5 \cdot 7$
4) $16(-3)$
5) $(-50)(-2)$
6) $(-12)(-1)$
7) $(-9)(-8)$
8) $(-15)(-3)$
9) $(16)(-4)$
10) $(-3)(-1)$
11) $(-1)(-1)(-1)$
12) $-8: 0 \cdot 2$

Divide:

13) $35 \div-5$
14) $\frac{16}{-4}$
15) $\frac{-20}{-5}$
16) $-21 \div 7$
17) $\frac{(-8)}{0}$
18) $\frac{(-32)}{8}$
19) $270 \div(-90)$
20) $-55 \div 11$
21) $\frac{400}{-200}$
22) An oil rig is drilling into the ground at a rate of 7 feet per minute. What integer represents the position of the oil rig after 22 minutes?
23) Monica has 100 shares of stock worth $\$ 8$ each. If the price drops $\$ 3$ per share, what integer represents the change of Monica's investment?

REview: SHOW ALL Work
24) $6+-12$
25) $-25+-7$
26) $40-(-20)$

Vocabulary

Algebraic Expression: \qquad
Variable: \qquad
Evaluate: \qquad
Substitution Property: \qquad

STEPS:

1) Write the original problem.
2) Rewrite the expression with the values of each variable substituted in parentheses.
3) Simplify by using order of operations. (SHOW ALL WORK)

Examples: Evaluate each expression if $\mathrm{n}=4, \mathrm{p}=3$, and $\mathrm{t}=6$

1) $3 n+p$
2) $t^{2}-2 p$
3) $3 p-n+4$
4) $\frac{n p t}{3}$
5) $-6.1 p$
6) $1.5(p+n)$
7) $4 n+3 p-2 t$
8) $12 \div 3 n+p$

Try These: Evaluate each expression if $\mathrm{n}=2, \mathrm{p}=-4$ and $\mathrm{t}=3$

1) $5 n+p$
2) $-2.4 t$
3) $3(p-n)+4$
4) $p \div(t-1)$
5) $\frac{p+n}{t}$
6) $n-p+t$
7) $\frac{p^{2}+4}{3 t+1}$
8) $p-n^{t}$

USE THE GIVEN FORMULA TO EVALUATE:

9) Drew drove to Chicago at an average rate of 50 mph . The trip took him 17 hours. How far did Drew drive?

Distance $=$ Rate \times Time

Evaluate each expression if $x=2, y=3$ and $z=5$

1) $2 x+z$
2) $z-2 x$
3) $3 x-y+3$
4) $\frac{5 x y}{z}$
5) $(x y)^{2}$
6) $3 x^{2}$
7) $\frac{x^{2}+4}{3 y-5}$
8) $6 x^{2}-z$

USE THE GIVEN FORMULA TO EVALUATE:

9) John is deciding whether he wants to install a rectangular pool or a cylindrical pool in his back yard. The pool company shows him two models, one a rectangular prism and one a cylinder, that are the same price. He wants to determine which pool would hold a larger volume of water.
[a] The rectangular prism pool has a width of 10 feet, a length of 20 feet, and a height of 5 feet. Using the formula for volume of a rectangular prism, determine the volume of this model.
$V=l w h$
[b] The cylindrical pool has a radius of 10 feet, and a height of 4 feet. Using the formula for volume of a cylinder, estimate the volume of this model. (use 3 as an estimate for π at the very end of the problem)

$$
V=\pi r^{2} h
$$

[c] Which pool has a greater volume? By how much?
10) A rectangular prism has a length of 5 inches, a width of 3 inches and a height of 7 inches. Find the surface area of the rectangular prism.

Surface Area $=2 l w+2 l h+2 w h$

Lesson 8
 Word Problems

1) One night in January, the temperature in Alaska is $-16^{\circ} \mathrm{F}$. The next day, the temperature is half of what it was the night before. What is the temperature?
2) During the fourth quarter, the Patriots were penalized 3 times for the same amount for a total of 45 yards. Write a division sentence to represent this equation. Then find the number of yards for each penalty.
3) Joey owes his friend $\$ 10$. He pays back $\$ 4$, and then borrows another $\$ 17$. How much money does Joey owe his friend?
4) A submarine is 800 feet below sea level. Over the course of the next few hours, the submarine ascends 200 feet, descends 400 feet, ascends 200 feet and descends 900 feet. How far below sea level is the submarine?
5) The temperature at midnight is recorded at -11°. Over the next ten hours, the temperature increased 13°. What is the temperature after this ten hour period?
6) An elevator started on the $9^{\text {th }}$ floor goes up 2 floors, then down 5 floors, then up 3 floors, then down 6 floors. On what floor is the elevator now?
7) The temperature in Anchorage, Alaska is recorded at -17°. At the same time, the temperature in Los Angeles, California is 97° warmer than in Anchorage. What is the temperature in Los Angeles?
8) In Buffalo, New York, the temperature was $-14^{\circ} \mathrm{F}$ in the morning. If the temperature dropped $7^{\circ} \mathrm{F}$ at $12: 00 \mathrm{pm}$, what is the temperature now?
9) A submarine was situated 750 feet below sea level. If it descends (goes down) 200 feet, what is its new position?
10) A submarine was situated 800 feet below sea level. If it ascends (goes up) 50 feet per hour, what is its new position after 5 hours?
11) Maggie deposits $\$ 35$ in the bank. She then withdraws $\$ 10$ on Monday, deposits $\$ 15$ on Tuesday, and then withdraws $\$ 14$ on Wednesday. How much does Maggie have left in the bank?
12) A submarine was situated 450 feet below sea level. If it descends (goes down) 300 feet, what is its new position?
13) A stock opens at $\$ 450$ per share on Monday. The chart displays the change over the course of the next few days. What is the value of the stock per share at closing on Friday?

Day	Change
Monday	$+\$ 21$
Tuesday	$-\$ 13$
Wednesday	$-\$ 8$
Thursday	$+\$ 15$
Friday	$-\$ 6$

4) In the Sahara Desert one day it was $136^{\circ} \mathrm{F}$. In the Gobi Desert a temperature of $-50^{\circ} \mathrm{F}$ was recorded. What is the difference between these two temperatures?
5) Mt. Everest, the highest elevation in Asia, is 20,320 feet above sea level. The Dead Sea, the lowest elevation, is 282 below sea level. What is the difference between these two elevations?
6) A runner jogs 14 miles in one direction. He then turns around and jogs 18 miles in the opposite direction.
[a] How far is the runner from his starting position?
[b] How far did the runner jog in total?
7) A scuba diver is 180 feet below sea level. She ascends 32 feet, and then descends 48 feet. What is her current depth?
8) An explorer jumps out of a plane and parachutes into a cave. He jumped out of the plane at 300 feet above sea level, and lands at the bottom of the cave, which is 900 feet below sea level.
[a] How far was the explorer's jump?
[b] Once in the cave, the explorer continues deeper into the cave. If he climbs to the lowest point in the cave, and records the depth at 1524 feet below sea level, how far down did he climb from where he landed?
9) A roller coaster at Six Flags has a largest drop of -276 feet. A roller coaster at Dorney Park has a largest drop of -239 feet. How much bigger is the drop at the roller coaster at Six Flags?
10) The Volunteer Club raked leaves at several senior citizens' homes in the neighborhood. If each group of three students could remove 8 cubic meters of leaves in one hour, find an integer to represent the number of cubic meters of leaves 12 students could remove in 3 hours?

MATCHING:

1) Integer
a. States that $a+b=b+a$
2) Operations
b. Addition, subtraction, multiplication, and division
3) Commutative Property
c. Negative opposite
4) Inverse
d. A mathematical sentence with no equal sign
5) Expression
e. The set of whole numbers and their negative opposites

SIMPLIFY: NO CALCULATOR

6) $3+2(2+1)$
7) $5 \cdot 2+4$
8) $(8-6) \div 2+1$
9) $3-(-2)$
10) $-17+3$
11) $-12+-3$
12) $-3-(-10)$
13) $(-2)^{2}$
14) -2^{2}
15) $\frac{-48}{-4}$
16) $-3 \cdot(-12)$
17) $(16-4) \div-2$
18) $(4+2)^{2}-(-12)$
19) $(-1)^{3}+3-2$
20) $(-3)(-2)(5)$
21) $(-3-6)+(3)(-2)$
22) $-5-15 \div-3$
23) $2-(3+6 \div-2)$
24) $|-9|$
25) |14|
26) $|-40|$
27) $|-10|$
28) $|100|$
29) $|-4|+|-1|$
30) $|-4-1|$
31) $|3-1|$
32) $|3|+|-1|$

COMPARE:

33) $|-5| \bigcirc 4$
34) $|6| \bigcirc|-6|$
35) $|-11| \bigcirc 10$
36) $|13| \bigcirc-13$

REPRESENT EACH SITUATION AS AN INTEGER:

37) $\$ 10$ withdrawal \qquad 38) 20 yard gain \qquad
38) 8° temperature drop \qquad 40) $\$ 15$ deposit \qquad

EVALUATE THE FOLLOWING IF: $x=3, y=4$, and $z=-2$
41) $2 y-2 x$
42) y^{2}
43) $1.3 x z$
44) $y+z$
45) An elevator begins on the $4^{\text {th }}$ floor and goes up 2 floors and then down 3 floors. What floor is the elevator on?
46) The temperature was 20° at noon. The temperature dropped at a rate of 8° per hour. What is the temperature at $3: 00 \mathrm{pm}$? Show all work.
47) Find the difference between 37° and -12°. Prove your answer on a number line.
49) John travels for 3 miles at an average speed of 40 mph , how far does he travel in this 3 hour span?

Distance $=$ Rate \bullet Time
50) A school policy requires that there be at least one chaperone for every 6 students on a field trip. How many chaperones are required for a field trip with 42 students?
51) What is the name of the answer to an

Addition problem: \qquad
Subtraction problem: \qquad
Multiplication problem: \qquad
Division problem: \qquad
52) The temperature on Monday morning was -12° using the chart determine what the temperature is Friday evening.

Day	Change
Monday	-6
Tuesday	3
Wednesday	4
Thursday	-2
Friday	-3

UNIT 2
 Fractions and Decimals

	Date	Lesson	
		1	Introduction to Decimals
		2	Adding, Subtracting, Multiplying, \& Dividing Decimals with Integers
		3	Introduction to Fractions
		4	Adding and Subtracting Fractions with Integers
		5	Quiz/ Multiplying and Dividing Fractions with Integers
		6	Dividing Complex Fractions
		7	Converting Rational Numbers to Decimals
		8	Comparing and Ordering Rational Numbers
		9	Timed Quiz/ Review
			Review
			Test

Vocabulary
Decimal: \qquad

Part I: Place Values

Fill in the place value in the appropriate space:

Examples:

Use the given decimal to answer the following questions: 743.1256

1. Which digit is in the hundreds place?
2. Which digit is in the tens place?
3. Which digit is in the ones place?
4. Which digit is in the tenths place?
5. Which digit is in the hundredths place?
6. Which digit is in the thousandths place?
7. Which digit is in the ten-thousandths place?

Part II: Rounding

Rounding Rules:

1. Underline the place value you are rounding.
2. Form a box around the place value you are rounding to and all numbers that come before that place value.
3. Draw an arrow to the number after the place value you are rounding to.
4. If the number after the place value you are rounding to is 5 or HIGHER, round UP.
5. If the number after the place value vou are rounding to is LESS THAN 5, the numbers stavs the SAME.

For Example: Round to the nearest tenth

$$
\frac{\curvearrowleft}{2,453.2}{ }^{\square}=2.453 .3
$$

Round the following decimals to the nearest tenth:
Examples:

1. 3.19
2. 4.921
3. 5.909
4. 89.985
5. 12.487

Try These:

6. 5.479
7. 72.134
8. 41.295
9. 9.987
10. 1.05

Round the following decimals to the nearest hundredth:
Examples:

1. 3.297
2. 8.9294
3. 75.989
4. 8.495
5. 18.783

Try These:

6. $\quad 6.754$
7. 9.987
8. $\quad 67.333$
9. 28.545
10. 19.296

Round the following decimals to the nearest thousandth:
Examples:

1. 3.2978
2. 2.4234
3. 52.0091
4. $\mathbf{1 8 . 1 2 3 6}$
5. 21.7253

Try These:
6. 0.0008
7. 8.0612
8. $\quad 14.1129$
9. 63.9867
10. 7.0054

Place Values:

Use the given decimal to answer the following questions: $4,657.3892$

1. Which digit is in the hundreds place?
2. Which digit is in the tens place?
3. Which digit is in the ones place?
4. Which digit is in the tenths place?
5. Which digit is in the hundredths place?
6. Which digit is in the thousandths place?
7. Which digit is in the ten-thousandths place?

Rounding:

Round the following decimals to the nearest tenth:
8. 2.68
9. 7.234
10. 12.357
11. 55.021
12. $\mathbf{1 7 . 1 4 5}$

Round the following decimals to the nearest hundredth:
13. 5.228
14. 30.189
15. 78.972
16. 24.290
17. 7.895

Round the following decimals to the nearest thousandth:
18. 0.4444
19. 10.0757
20. 45.2305
21. 20.1033
22. 9.7001

Round to the nearest whole number:
23. 5.542
24. 33.276
25. 107.89

Vocabulary Review:

Sum: \qquad
Difference: \qquad
Product: \qquad
Quotient: \qquad

Adding/ Subtracting Decimals
 Rules:

1. Neatly line up the Decimals
2. Add or Subtract

Examples: Find the Sum or Difference

1) 2.13
2) 0.13
3) 6.575 $+0.4$
$+3.87$
-2.82
4) $195.62-35.1$
5) $12.6+2.7+100.67$
6) $9.001-(-2.4)$

Try These:

1) $76.32-16.81$
2) $20.54-(-3.6)$
3) $34.88-14.12$
4) $16.2+24.9$
5) $9.4-4.08$
6) $3.8+10.5+1.2+7$

Apply:

7) A serving of popcorn contains 0.005 g of sodium. If butter adds .116 g of sodium and salt adds 0.5 g , how much sodium is in a serving of popcorn with butter and salt?

Multiplying Decimals

Rules:

1. Ignore the decimals
2. Multiply the given numbers as if they were whole numbers
3. Count the amount of places after the decimal in each number
4. Move the decimal the number of places you counted from the right

Examples: Find the product

1) 1.02×3.6
2) -58×2.6
3) $(-4.15)(-2.1)$

Try These:
4) $(2.6)(0.45)$
5) $(2.15)(1.5)$
6) $(0.91)(2.7)$

Dividing Decimals

Rules:

1. Rewrite each problem as long division
2. Change the outside number to a whole number
3. Move the inside decimal the same amount of places as the outside number
4. Divide the two numbers as whole numbers to find the quotient
5. Write the decimal UP into the answer

Examples: Find the Quotient

1) $3.12 \div 2.6$
2) $19.2 \div-3.2$
3) $-10.8 \div-2.7$

Try These:
4) $\frac{300}{75}$
5) $\frac{300}{7.5}$
6) $\frac{300}{0.75}$

Find the Sum or Difference:

1) $4.6+8.79$
2) $-8.7-2.03$
3) $14.8+29.07$
4) $14.5-8.3$
5) $8.9+2.14+7.1$
6) $5.002-(-4.3)$

Find the Product:

7) 4.6×3.9
8) $(-1.8)(0.7)$
9) (2.1)(3.1)

Find the Quotient:

10) $4.85 \div 0.1$
11) $57.4 \div 0.7$
12) $\frac{-4.74}{-0.06}$

Apply:

13) An apple costs $\$.60$. How much will it cost to purchase a dozen apples?
14) Nina and three friends ate lunch at the cafe. They decided to split the bill evenly. The total bill was $\$ 17.84$. How much was each person's share?
15) Alicia paid $\$ 1.32$ for a bag of potato chips. The potato chips cost $\$ 0.55$ per pound. How much does the bag of potato chips weigh?

Introduction to Fractions

Vocabulary:

Fraction: \qquad
Numerator: \qquad
Denominator: \qquad
Simplify: \qquad

Part I: Equal Fractions (Multiply)
$\frac{5}{8}=\frac{10}{16}$

Examples: Find the missing numbers

1) $\frac{2}{3}=\frac{10}{}$
2) $\frac{7}{10}=\frac{}{100}$
3) $\frac{6}{7}=\frac{54}{}$
4) $\frac{3}{30}=\frac{}{60}$
5) $\frac{0}{9}=\frac{}{36}$

Try These:

6) $\frac{7}{12}=\frac{42}{}$
7) $\frac{1}{9}=\frac{9}{-}$
8) $\frac{8}{21}=\frac{-}{63}$
9) $\frac{4}{5}=\frac{100}{}$
10) $\frac{2}{8}=\frac{}{36}$

Part II: Simplify - (Divide by the GCF)

$$
\frac{12}{20}=\frac{3}{5}
$$

Examples: Simplify each fraction:

1) $\frac{9}{15}=\frac{3}{}$
2) $\frac{8}{32}=\frac{-}{4}$
3) $\frac{17}{20}=\frac{17}{}$
4) $\frac{56}{64}=\frac{-}{8}$
5) $\frac{12}{48}=\frac{1}{}$

Try These:

6) $\frac{15}{25}=\frac{3}{}$
7) $\frac{6}{12}=\frac{-}{2}$
8) $\frac{12}{32}=\frac{-}{8}$
9) $\frac{25}{100}=\frac{1}{}$
10) $\frac{13}{17}=\frac{}{17}$

Write three equivalent fractions to each given fraction (Multiply or Divide):

Examples:

1) $\frac{2}{4}=$
2) $\frac{6}{8}=$
3) $\frac{12}{48}=$

Try These:

4) $\frac{9}{15}=$
5) $\frac{1}{7}=$
6) $\frac{16}{20}=$

Compare these fractions using \langle,$\rangle , or =$.

Rules:

1. Write each fraction with a common denominator
2. Compare the numerators

Examples:

1) $\frac{6}{7} \bigcirc \frac{4}{7}$
2) $\frac{4}{8} \bigcirc \frac{16}{32}$
\bigcirc_{3}^{2}
$\frac{3}{4}$

Try These:
4) $\frac{19}{32} \bigcirc \frac{21}{32}$
5) $\frac{4}{5} \bigcirc \frac{9}{10}$
6) $\frac{1}{4} \bigcirc \frac{1}{5}$

Apply:

1) John has 40 bolts in his toolbox. 12 of them are brass. What fraction of the bolts are brass?

Write the answer as a simplified fraction.
2) There are 60 washers in John's toolbox. 48 of them are zinc-plated. What fraction of the washers are zinc-plated? Write the answer as a simplified fraction.
3) John owns a bolt that has a length of $\frac{3}{4}$ in. Give 3 equal measures for the length of the bolt.

Find the missing numbers:

1) $\frac{2}{7}=\frac{12}{}$
2) $\frac{6}{10}=\frac{-}{50}$
3) $\frac{20}{25}=\frac{}{100}$
4) $\frac{3}{9}=\frac{21}{}$
5) $\frac{0}{7}=\frac{}{56}$
6) $\frac{4}{6}=\frac{32}{}$
7) $\frac{1}{11}=\frac{}{121}$
8) $\frac{7}{7}=\frac{70}{}$
9) $\frac{12}{20}=\frac{}{40}$
10) $\frac{5}{9}=\frac{-}{36}$

Simplify each fraction:
11) $\frac{3}{36}=\frac{1}{}$
12) $\frac{7}{10}=\frac{-}{10}$
13) $\frac{16}{24}=\frac{2}{}$
14) $\frac{15}{35}=\frac{-}{7}$
15) $\frac{10}{100}=\frac{}{10}$
16) $\frac{14}{20}=\frac{7}{-}$
17) $\frac{80}{100}=\frac{}{5}$
18) $\frac{12}{48}=\frac{1}{}$
19) $\frac{36}{40}=\frac{}{10}$
20) $\frac{1}{9}=\frac{-}{9}$

Write three equivalent fractions to each given fraction:
21) $\frac{20}{25}=$
22) $\frac{1}{8}=$
23) $\frac{7}{9}=$
24) $\frac{4}{5}=$
25) $\frac{8}{16}=$
26) $\frac{5}{12}=$

Compare these fractions using \langle,$\rangle , or =$:
27) $\frac{4}{9} \bigcirc \frac{5}{9}$
28) $\frac{1}{2} \bigcirc \frac{1}{3}$
29) $\frac{2}{3} \bigcirc \frac{8}{12}$
30) $\frac{16}{17} \bigcirc \frac{17}{17}$
31) $\frac{11}{12} \bigcirc \frac{55}{60}$
32) $\frac{13}{14} \bigcirc \frac{6}{7}$

Order the following fractions from least to greatest:
33) $\frac{2}{5}, \frac{1}{4}, \frac{3}{10}$

Vocabulary:

Proper Fraction: \qquad
Improper Fraction: \qquad
Mixed Number: \qquad
Least Common Denominator:

Add/ Subtract fractions

Rules:

1. Write each fraction with a common denominator
2. Add or Subtract the numerators
3. Keep the common denominator
4. If possible, simply the answer into lowest terms

Examples: Add

1) $\frac{5}{12}+\frac{1}{12}$
2) $\frac{2}{5}+\frac{3}{5}$
3) $\frac{5}{16}+\frac{5}{16}$
4) $\frac{3}{4}+\frac{1}{20}$
5) $\frac{3}{5}+\frac{1}{7}$

Try These:

1) $\frac{3}{9}+\frac{2}{9}$
2) $\frac{1}{8}+\frac{1}{10}$
3) $\frac{1}{9}+\frac{2}{3}$
4) $\frac{1}{4}+\frac{5}{8}$
5) $\frac{5}{12}+\frac{8}{15}$

Examples: Subtract

1) $\frac{3}{5}-\frac{2}{5}$
2) $\frac{7}{12}-\frac{1}{12}$
3) $\frac{5}{10}-\frac{5}{10}$
4) $\frac{2}{3}-\frac{1}{4}$
5) $\frac{7}{8}-\frac{3}{16}$

Try These:

1) $\frac{5}{8}-\frac{3}{8}$
2) $\frac{1}{2}-\frac{1}{3}$
3) $\frac{4}{9}-\frac{1}{6}$
4) $\frac{8}{9}-\frac{4}{9}$
5) $\frac{3}{5}-\frac{1}{7}$

Introducing Improper Fractions and Mixed Numbers:

Examples: Perform the given operation

1) $\frac{1}{4}+\frac{15}{16}$
2) $\frac{2}{3}+\frac{1}{2}$
3) $\frac{5}{9}+\frac{1}{3}+\frac{5}{6}$
4) $7+\frac{11}{16}$
5) $2 \frac{1}{8}+9 \frac{7}{8}$
6) $4 \frac{1}{2}+3 \frac{1}{6}$
7) $15 \frac{6}{7}$
8) $10 \frac{9}{10}$
9) $4 \frac{11}{12}-1 \frac{3}{4}$
$-8 \frac{3}{7}$
$-3 \frac{1}{10}$

Try These:

1) $\frac{3}{4}+\frac{2}{3}$
2) $\frac{9}{10}+\frac{7}{8}+\frac{3}{5}$
3) $7 \frac{5}{16}+3 \frac{1}{4}$
4) $11 \frac{4}{5}+\frac{5}{6}$
5) $12 \frac{3}{4}$
6) $9 \frac{17}{20}-\frac{4}{5}$

$$
-5 \frac{1}{2}
$$

Adding and Subtracting Fractions with Integer rules:

1) $\frac{3}{10}-\left(-\frac{2}{5}\right)$
2) $-\frac{5}{7}-\frac{1}{5}$
3) $\frac{2}{4}-\frac{15}{20}$

Find the sum or difference:

1) $\frac{1}{8}+\frac{5}{8}$
2) $\frac{5}{6}-\frac{1}{6}$
3) $\frac{7}{10}-\left(-\frac{1}{10}\right)$
4) $6 \frac{2}{5}+1 \frac{4}{5}$
5) $7 \frac{2}{3}-1 \frac{1}{6}$
6) $6 \frac{2}{5}+1 \frac{4}{10}$
7) $\frac{1}{7}+\frac{5}{9}$
8) $\frac{11}{12}-\frac{3}{4}$
9) $\frac{9}{10}-\frac{8}{11}$
10) $5 \frac{2}{5}+4 \frac{4}{9}$
11) $-8 \frac{2}{3}-9 \frac{1}{6}$
12) $16 \frac{2}{9}+1 \frac{7}{10}$
13) $\frac{1}{16}+\frac{1}{32}$
14) $\frac{6}{18}-\frac{1}{3}$
15) $\frac{12}{5}-\frac{9}{18}$
16) $-1 \frac{2}{3}+3 \frac{7}{9}$
17) $8 \frac{1}{3}-3 \frac{1}{27}$
18) $11 \frac{2}{5}+1 \frac{11}{30}$
19) $\frac{7}{8}+\frac{7}{8}+\frac{7}{16}$
20) $\frac{5}{6}+\frac{4}{5}+\frac{11}{15}$
21) $5 \frac{1}{2}+7 \frac{2}{3}-4 \frac{1}{2}$

Vocabulary:
Reciprocal: \qquad
Multiplying Fractions
Rules:

1. Convert each mixed number into an improper fraction
2. Simplify/ Reduce vertically
3. Simplify/ Reduce diagonally
4. Multiply across
5. If possible, convert back to a mixed number

Examples: Multiply

1) $\frac{1}{2} \times \frac{1}{4}$
2) $\frac{1}{5} \cdot \frac{3}{10}$
3) $-\frac{4}{5} \times \frac{5}{8}$
4) $\frac{3}{8} \times \frac{4}{9}$
5) $-\frac{2}{5} \times-\frac{15}{16}$
6) $6 \cdot \frac{1}{3}$
7) $1 \frac{2}{3} \times-12$
8) $10 \times 4 \frac{1}{5}$
9) $2 \frac{1}{7} \times 2 \frac{1}{3}$
10) $\frac{2}{5} \times 3 \frac{3}{4}$

Try These:

1) $\frac{2}{3} \times \frac{1}{4}$
2) $-\frac{2}{3} \times \frac{3}{4}$
3) $\frac{3}{10} \times \frac{5}{14}$
4) $-\frac{5}{6} \cdot-\frac{6}{7}$
5) $\frac{3}{4} \times 8$
6) $\frac{2}{5} \times \frac{2}{5}$
7) $10 \cdot \frac{3}{4}$
8) $2 \frac{1}{2} \cdot 2 \frac{1}{2}$
9) $4 \frac{7}{8} \times-6$
10) $5 \frac{1}{3} \times 4 \frac{1}{2}$

Apply:

1) What is $\frac{2}{3}$ of 60 ?
2) David allows $\frac{1}{3}$ hour per pound to cook the roast. how long will it take to cook a $4 \frac{1}{2}$ - pound roast?

Dividing Fractions

Rules:

1. Convert each mixed number into an improper fraction
2. Change the operation from division to multiplication
3. Flip the second fraction
4. Continue the problem using the multiplication rules

Examples: Divide

1) $\frac{1}{2} \div \frac{1}{4}$
2) $\frac{3}{10} \div \frac{1}{5}$
3) $\frac{3}{8} \div \frac{7}{16}$
4) $-\frac{2}{3} \div \frac{5}{6}$
5) $\frac{3}{16} \div \frac{5}{12}$
6) $-\frac{7}{9} \div-7$
7) $\frac{3}{7} \div \frac{3}{7}$
8) $-5 \div \frac{3}{5}$
9) $9 \div 2 \frac{1}{4}$
10) $2 \frac{1}{12} \div 3 \frac{3}{4}$

Try These:

1) $\frac{3}{8} \div \frac{6}{7}$
2) $-\frac{6}{7} \div \frac{3}{8}$
3) $\frac{1}{2} \div \frac{7}{16}$
4) $-\frac{4}{5} \div-\frac{2}{9}$
5) $\frac{2}{5} \div \frac{2}{5}$
6) $\frac{5}{8} \div 5$
7) $2 \frac{1}{2} \div-\frac{5}{6}$
8) $6 \frac{1}{4} \div 2$
9) $-10 \div-3 \frac{1}{3}$
10) $2 \frac{3}{16} \div 1 \frac{1}{4}$

Find the product or quotient:

1) $\frac{3}{8} \times \frac{1}{2}$
2) $-\frac{4}{5} \div \frac{1}{5}$
3) $\frac{1}{9} \div \frac{5}{6}$
4) $3 \frac{1}{3} \times \frac{1}{3}$
5) $4 \frac{1}{6} \cdot-2 \frac{2}{5}$
6) $6 \frac{1}{2} \div 1 \frac{1}{2}$
7) $3 \frac{3}{8} \div 1 \frac{1}{4}$
8) $-\frac{3}{5} \div-\frac{5}{3}$
9) $\frac{4}{7} \cdot-7$
10) $12 \cdot \frac{1}{10}$
11) $-\frac{9}{16} \div 3$
12) $-6 \times \frac{3}{8}$
13) $5 \frac{1}{3} \times 6 \frac{3}{4}$
14) $-4 \frac{1}{3} \cdot-2 \frac{2}{3}$
15) $4 \frac{1}{4} \div 7 \frac{7}{8}$
16) $2 \frac{3}{16} \div-1 \frac{1}{4}$
17) $\frac{15}{16} \times \frac{2}{5} \times \frac{3}{4}$
18) $-6 \cdot \frac{3}{8} \cdot \frac{4}{5}$

Vocabulary:

Complex Fraction:
Rules: "Keep. Change. Flip."

1. Convert any Mixed Number into an Improper Fraction
2. Keep the top fraction as is
3. Change the operation from division to multiplication
4. Flip the bottom fraction next to the first fraction
5. Continue the problem using the multiplication rules

Examples:

1) $\frac{\frac{3}{2}}{\frac{8}{10}}$
2) $\frac{\frac{2}{5}}{3}$
3) $\frac{-\frac{1}{4}}{\frac{5}{6}}$

Try These:
4) $\frac{-\frac{3}{4}}{\frac{4}{3}}$
5) $\frac{-\frac{3}{2}}{-\frac{8}{10}}$
6) $\frac{\frac{6}{2}}{12}$

More Examples:
7) $\frac{5 \frac{1}{3}}{1 \frac{1}{2}}$
8) $\frac{\frac{2}{3}+\frac{1}{4}}{\frac{1}{3}}$
9) $\frac{\frac{1}{3}+\frac{1}{2}}{\frac{9}{5}+\frac{1}{5}}$

1) $\frac{\frac{3}{4}}{\frac{2}{3}}$
2) $\frac{\frac{2}{5}}{\frac{4}{3}}$
3) $\frac{-\frac{1}{6}}{\frac{5}{12}}$
4) $\begin{array}{r}-\frac{2}{5} \\ -\frac{8}{5}\end{array}$
5) $\frac{3 \frac{1}{8}}{25}$
6) $\frac{13 \frac{1}{3}}{8}$
7) $\frac{-6 \frac{1}{4}}{2 \frac{1}{2}}$
8) $\frac{\frac{1}{8}+\frac{1}{10}}{\frac{3}{5}}$
9) $\frac{\frac{2}{3}+\frac{1}{9}}{\frac{4}{5}+\frac{8}{15}}$

Lesson 7

Convert Rational Numbers to Decimals

Types of Fractions	Types of Decimals
Proper Fractions	Terminating Decimals
Improper Fractions	Non-Terminating Decimals
Mixed Numbers	Repeating Decimals

Fractions to Remember:

$$
\frac{1}{4}=.25 \quad \frac{1}{2}=.5 \quad \frac{3}{4}=.75
$$

$$
\frac{1}{5}=.2 \quad \frac{2}{5}=.4 \quad \frac{3}{5}=.6 \quad \frac{4}{5}=.8
$$

$$
\frac{1}{3}=. \overline{3} \quad \frac{2}{3}=. \overline{6}
$$

$$
\frac{1}{8}=.125 \quad \frac{3}{8}=.375 \quad \frac{5}{8}=.625 \quad \frac{7}{8}=.875
$$

$\frac{1}{10}=.1$	$\frac{2}{10}=.2$	$\frac{3}{10}=.3$	$\frac{4}{10}=.4$	$\frac{5}{10}=.5$	$\frac{6}{10}=.6$	$\frac{7}{10}=.7$	$\frac{8}{10}=.8$	$\frac{9}{10}=.9$
$\frac{10}{10}=1$								

Examples:

1) $\frac{1}{4}$
2) $\frac{4}{9}$
3) $3 \frac{2}{5}$
4) $4 \frac{8}{9}$
5) $2 \frac{7}{8}$
6) $\frac{19}{5}$

Try These:
7) $\frac{5}{8}$
8) $\frac{8}{9}$
9) $2 \frac{2}{9}$

Converting Decimals to Fractions or Mixed Numbers:

1. Determine what place the decimal goes to (tenth, hundredth, thousandth, etc.)
2. Write the number in the numerator of a fraction with the place value in the denominator
3. Simplify if possible

Examples:

1) 0.75
2) 0.9
3) 2.125

Try These:

4) 0.234
5) 3.2
6) 0.875
7)

$0 . \overline{4}$
8) 3.9
9) 0.45
10) The Mets won 77 out of 162 games in the 2011 regular season.
a) Express this as a fraction
b) Convert the fraction to a decimal (round to the nearest hundredth)
11) The Yankees won 97 out of 162 games in the 2011 regular season.
[a] Express this as a fraction
[b] Convert the fraction to a decimal (round to the nearest hundredth)

Convert each fraction or mixed number to a decimal (round to the nearest hundredth if necessary):

1. $\frac{1}{9}$
2. $\frac{7}{8}$
3. $\frac{3}{5}$
4. $2 \frac{4}{9}$
5. $3 \frac{1}{8}$
6. $\frac{7}{5}$
7. $\frac{5}{11}$
8. $2 \frac{3}{7}$
9. $\frac{4}{7}$
10. $5 \frac{9}{25}$
11. $\frac{17}{20}$
12. $\frac{53}{50}$

Convert each decimal to a fraction or mixed number:

13. 0.5
14. 0.91
15. 0.15
16. 0.23
17. 0.251
18. 0.625
19. $0 . \overline{2}$
20. 3.05
21. 0.36

Lesson 8

Compare and Order Rational Numbers

Examples: Compare

1. 0.6
$\bigcirc 0.525$
2. $\frac{3}{4} \bigcirc \frac{3}{8}$
3. $0.8 \bigcirc \frac{17}{20}$
4. $3 \frac{5}{8} \bigcirc$
3.625
5. $-0.25 \bigcirc-0.2$
6. $-\frac{4}{5} \bigcirc-\frac{7}{9}$
7. $0.5 \bigcirc \frac{11}{20}$
8. $4 \frac{7}{8} \bigcirc$
3.9

Try These:

9.

10. $-\frac{3}{4} \bigcirc-\frac{7}{8}$
11. $-0.8 \bigcirc-0.9$
12. $2 \frac{5}{8} \bigcirc$
3.6
13. 0.75
$\bigcirc 0.7$
14. $\frac{3}{5} \bigcirc$
$0 . \overline{6}$
15. $0.6 \bigcirc \frac{7}{11}$
16. $5 \frac{7}{8} \bigcirc$

Order the given set of numbers from least to greatest

Examples:

1. $\frac{7}{10},-\frac{1}{8}, 0.25,0.9 \quad 2 . \frac{5}{8},-\frac{3}{4}, 1 \frac{3}{8}, 1.25,-1.1$

Try These:
3. $\frac{1}{3}, \frac{5}{2}, 0 . \overline{6}, 0.6$
4. $\frac{3}{5},-\frac{1}{4},-\frac{3}{4}, \pi$

Plot the given set of numbers on the number line

Examples:

$$
\text { 1. } \frac{7}{10},-\frac{1}{8}, 0.25,0.9
$$

2. $2 \frac{5}{8},-\frac{1}{4},-1 \frac{1}{4}, 0.25,-1.75$

Compare:

1. $0.7 \bigcirc 0.60$
2. $\frac{3}{20} \bigcirc \frac{7}{40}$
3. $0.4 \bigcirc \frac{9}{20}$
4. $3 \frac{1}{4} \bigcirc$
3.3
5. $-0.5 \bigcirc-0.7$
6. $-\frac{4}{9} \bigcirc-\frac{5}{9}$
7. $0.7 \bigcirc \frac{15}{20}$
8. $6 \frac{1}{8} \bigcirc$
6.12
9. $0 . \overline{4} \bigcirc 0.4$
10. $-\frac{3}{12} \bigcirc-\frac{1}{4}$
11. $-0.75 \bigcirc-0.7$
12. $4 \frac{1}{9} \bigcirc$
4.5

Order the given set of numbers from least to greatest:
13. $\frac{3}{4},-\frac{1}{8},-0.5,0.1$
14. $\frac{7}{8},-\frac{5}{4}, 5 \frac{3}{8},-11$
15. $\frac{2}{5}, \frac{4}{5},-\frac{2}{5}, \frac{3}{5}$
16. $\frac{7}{5}, 1 \frac{1}{5},-\frac{5}{6}, \pi$

Plot the given set of numbers which are from \#13 and \#14 above on the number line:
17. $\frac{3}{4},-\frac{1}{8},-0.5,0.1$
18. $\frac{7}{8},-\frac{5}{4}, 5 \frac{3}{8},-11$

Inputting fractions into the calculator

You must use the $a \frac{b}{c}$ button Use (-) if you need to make a number negative.

- Simple fractions such as $\frac{\mathbf{1}}{\mathbf{2}}$ are entered as:

$$
\begin{array}{lll}
\hline 1 & a \frac{b}{c} & 2 \\
\hline
\end{array}
$$

- Mixed numbers such as $\mathbf{- 1} \frac{\mathbf{1}}{\mathbf{2}}$ are entered as:
rorr
- To change a mixed number to an improper fraction:
Shift $\boldsymbol{a}_{\underline{\boldsymbol{b}}}^{\boldsymbol{c}}$

Examples:

$\frac{1}{4}+\frac{2}{3}=$

Enter the following: $\quad \mathbf{1} |$| $\frac{b}{c}$ | \mathbf{b} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The correct answer is \qquad
$1 \frac{3}{4}+2 \frac{1}{3}=$

Enter the following:

$$
1 a \frac{a}{c} \text { a } \frac{b}{c} \text { b } 42 \frac{a}{c} 1 a \frac{b}{c} 13
$$

The correct answer is \qquad

Solve the following using your calculator:

1) $\frac{1}{6}+\frac{2}{3}=$
2) $0.98-6.3=$
3) $5 \frac{1}{4}-2 \frac{2}{3}=$
4) $9.65 \times 78.54=$
5) $-\frac{3}{10} \div 4 \frac{1}{3}=$
6) $9 \frac{1}{8} \times 2 \frac{2}{5}=$

Convert the following into a mixed number using your calculator:
7) $\frac{16}{6}=$
8) $-\frac{223}{5}=$
9) $-\frac{654}{25}=$

Convert the following into an improper fraction using your calculator:

10) $2 \frac{1}{7}=$
11) $-8 \frac{5}{14}=$
12) $-22 \frac{4}{5}=$

Use your calculator to solve:

13) Mrs. Aronow's family went for a trip. To make the journey interesting, they traveled the first $53 \frac{1}{4}$ miles by car and the remaining $10 \frac{2}{3}$ miles by horse. What was the total distance of the trip?
14) $\frac{4}{7}$ of birthday cake was eaten on your birthday. The next day your dad ate half of what was left. You get to finish the cake. How much was left?
15) The recipe for mint chocolate chip ice cream requires 2.25 cups of cream for 5 people. You need ice cream for 10 people. How much cream will you need?
16) One parking lot at MetLife Stadium will hold 1000 vehicles. At 10:00 there were 400 cars and some trucks in the parking lot. The parking lot was $\frac{3}{4}$ full. How many trucks were in the parking lot?

Solve the following using your calculator:

1) $\frac{1}{5}+\frac{2}{7}=$
2) $\frac{94}{110}+\left(-\frac{15}{38}\right)=$
3) $64.6 \times-93.1=$
4) $-\frac{12}{15} \times \frac{1}{4}=$
5) $-8 \frac{4}{9} \div-2 \frac{3}{7}=$
6) $10 \frac{5}{7} \times-2 \frac{6}{9}=$

Convert the following into a mixed number using your calculator:

7) $\frac{25}{8}=$
8) $-\frac{3871}{6}=$
9) $-\frac{676}{3}$

Use your calculator to solve.

10) Vincent ordered pizza for him and his wife for dinner. When they had finished, they realized that $\frac{5}{8}$ of the pizza was gone. For lunch the next day, Vincent decided to eat $\frac{1}{4}$ of what was left. How much was left after lunch?
11) Mrs. Strom decided to participate in a triathlon. She first had to run 4.5 miles. Next, she swam 3.25 miles and then finished the remaining 15.75 miles by bike. What was the total distance of the triathlon?
12) Mr. DeMeo was baking brownies. His recipe called for $3 \frac{1}{2}$ cups of melted chocolate to make enough brownies for 24 people. He is having 72 people over for his birthday. How much chocolate will he need?

Fractions to Remember:

$$
\frac{1}{4}=.25 \quad \frac{1}{2}=.5 \quad \frac{3}{4}=.75
$$

$$
\frac{1}{5}=.2 \quad \frac{2}{5}=.4 \quad \frac{3}{5}=.6 \quad \frac{4}{5}=.8
$$

$\frac{1}{3}=. \overline{3} \quad \frac{2}{3}=. \overline{6}$

$$
\frac{1}{8}=.125 \quad \frac{3}{8}=.375 \quad \frac{5}{8}=.625 \quad \frac{7}{8}=.875
$$

$\frac{1}{9}=. \overline{1}$	$\frac{2}{9}=. \overline{2}$	$\frac{4}{9}=. \overline{4}$	$\frac{5}{9}=. \overline{5}$	$\frac{7}{9}=. \overline{7}$	$\frac{8}{9}=. \overline{8}$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \frac{1}{10}=.1 & \frac{2}{10}=.2 & \frac{3}{10}=.3 & \frac{4}{10}=.4 & \frac{5}{10}=.5 & \frac{6}{10}=.6 & \frac{7}{10}=.7 & \frac{8}{10}=.8 & \frac{9}{10}=.9 & \frac{10}{10}=1 \\
\hline
\end{array}
$$

Round the following decimals to the
a) nearest tenth:
b) nearest hundredth:
c) nearest whole number:

1) $\mathbf{1 8 . 1 2 8 6}$
2) 2.4234
3) 3.2978

Write each fraction or mixed number as a decimal.
4) $\frac{2}{3}$
5) $\frac{1}{2}$
6) $2 \frac{4}{5}$

Write each decimal as a fraction.
7) .6
8) .45
9) 4.3

Replace \bigcirc with $<,>$, or $=$.
10) $\frac{4}{5} \bigcirc \frac{5}{6}$
11) $.35 \bigcirc \frac{1}{3}$
12) $5.1 \bigcirc 5 \frac{1}{5}$

Order the set of rational numbers from least to greatest. Graph on the number line.
13) $\left\{\frac{1}{5}, 3.8,2 \frac{2}{3}, 0.75\right\}$
14) $\left\{\frac{6}{3}, 1.5,2 \frac{1}{3}, 4 \frac{3}{8}\right\}$

Graph on the number line.
Graph on the number line.

Convert the following into a mixed number or an improper fraction:
15) $2 \frac{1}{3}$
16) $\frac{16}{5}$
17) $6 \frac{5}{6}$

Find the sum or difference:

18) $4.1+2.9$
19) $-12.8+3$
20) $12.362-(-3.41)$

Find the product:
21) (4.3)(1.45)
22) $(6.3)(-7.4)$
23) $(-13.1)(-2.6)$

Find the quotient:
24) $15.8 \div 2$
25) $\frac{-22}{0.4}$
26) $\frac{12.15}{2.7}$

Find each sum or difference:
27) $\frac{1}{4}+\frac{3}{6}$
28) $\frac{7}{12}-\frac{1}{3}$
29) $\frac{3}{5}-\frac{1}{3}$
30) $3 \frac{3}{10}-\left(-1 \frac{3}{5}\right)$
31) $4-2 \frac{3}{10}$
32) $-3 \frac{1}{2}+-4 \frac{1}{3}$
33) $\frac{5}{8} \cdot \frac{2}{5}$
34) $\frac{3}{8} \div \frac{2}{3}$
35)
$\frac{2}{3}$
$\frac{3}{4}$
$\frac{5}{5}$
36) $3 \frac{5}{6} \cdot 2 \frac{1}{4}$
37) $3 \frac{3}{5} \div 1 \frac{1}{5}$
38) $\frac{6}{3 \frac{3}{5}}$

Word Problems:

39) What is $\frac{3}{4}$ of 24 ?
40) Monica had 18 cookies. If Monica ate $\frac{1}{6}$ of the cookies after dinner, how many cookies were left?
41) Joe made two types of desserts. He used $\frac{2}{3}$ cups of sugar for one recipe and $\frac{1}{4}$ cups of sugar for the other recipe. How much sugar did he use in all?
42) Six cases of paper cost $\$ 43.50$. How much does one case cost?

Unit 2 Vocabulary:

Sum: \qquad
Difference: \qquad
Product: \qquad
Quotient: \qquad
Numerator: \qquad
Denominator: \qquad
Reciprocal: \qquad
Improper Fraction: \qquad
Mixed Number: \qquad

Unit 3 Expressions

	Date	Lesson	
		1	Classifying Polynomials \& Combining Like Terms
		2	Combining Like Terms with Negatives
		3	The Distributive Property
		4	Distribute and Combine Like Terms
		5	Greatest Common Factors (GCF)
		6	Factoring
			Quiz
		7	Adding and Subtracting Expressions
		8	Translating Expressions
			Review
			Test

Important Vocabulary:

Variable: \qquad

Coefficient: \qquad

Constant: \qquad
Ex: $3 x+5$
Variable: \qquad Coefficient: \qquad Constant: \qquad

Term: \qquad

Polynomial: \qquad

Monomial: \qquad
\qquad
Ex 1:
Ex 2: \qquad Ex 3: \qquad

Binomial: \qquad
\qquad
Ex 1:
Ex 2: \qquad Ex 3: \qquad

Trinomial: \qquad
\qquad Ex 2: \qquad Ex 3: \qquad

Like Terms:

\qquad

Ex 1: \qquad Ex 2: \qquad Ex 3: \qquad

Perimeter: \qquad

Examples:

Identify the Variable, Coefficient and Constant in Each of the Following:

1. $4 y+7$

Variable: \qquad Coefficient: \qquad Constant: \qquad
2. $3 x+12$

Variable: \qquad Coefficient: \qquad Constant: \qquad
3. $-2 z+17$

Variable: \qquad Coefficient: \qquad Constant: \qquad
4. $\mathrm{x}-3$

Variable: \qquad Coefficient: \qquad Constant: \qquad
5. 19 x

Variable: \qquad Coefficient: \qquad Constant: \qquad

Classify Each of the Following as Monomials, Binomials, or Trinomials:
6. $14 \mathrm{x}-2$
7. $3 x+4 y$
8. 5 x
9. $3 x+2 y-2 z$
10. $3 x y z$
11. $x+y+z$
12. $2 \mathrm{x}-\mathrm{y}$
13. 14 x
14. $5 x+y-z$
15. 2 x

State whether the given terms are like terms or not like terms:
16. $3 x$ \& 4
17. $5 \mathrm{x} \& 8 \mathrm{x}$
18. $4 a b$ \& $2 a c$
19. $12 \& 3$
20. $8 \mathrm{a} \&-4 \mathrm{a}$
21. $x \& 4 x$
22. xy \& x
23. $x^{2} \& x$
24. 10 z \& 2 z
25. $2 \mathrm{x} \&-4$

Combining Like Terms:

Step 1 - Identify like terms
Step 2 - Perform appropriate operation to combine like terms
Simplify Each Expression:

1) $3 x+6 x$
2) $2 x+2+1$
3) $8 y+7 y$
4) $8 x+2 x+5$
5) $5 x+x$
6) $3 x+2+y$
7) $9 x+4 y+2 x+3 y$
8) $7 x+8+x+3$
9) $8 x+4 x$
10) $4 x+7 y+4+5 x+y$
11) $8 x+10.2+4 x+2.9$
12) $8 y+4+7$
13) $9.2 x+4.3 y+x$
14) $9 y+2 y$
15) $3 x+5 y+6$

Write an expression in simplest form for the perimeter of each figure:
15)

4

$5 x$
17)

Circle "like" or "not like" for the following terms:

1) $x \quad 2 x$
2) $6 a 4$
3) $2 x^{2} \quad x$
4) z 3 z
5) $\frac{1}{2} x$
$.4 y$
like not like like not like like not like like not like like not like
a) Determine what the coefficient is, b) Determine what the variable is, and c) Determine what the constant is:
6) $3 x+5$
7) $2 y+9$
8) $-9 a+10$
9) $7 \mathrm{z}+18$
10) $12 \mathrm{z}-10$
a) \qquad
a) \qquad
a) \qquad
a) \qquad
a)
b) \qquad
c) \qquad
b)
b) \qquad
b) \qquad
c) \qquad

Simplify the following expressions:
11) $5 x+3 x$
12) $8 x+4 x$
13) $6 x+4 x+x$
14) $2 x+x+8$
15) $3 x+5+x$
16) $3 x+2 x+y+3 y$
17) $7+6 x+2+3 x$
18) $x+2 x+2 y+3 y$
19) $x+x+y+y$
20) $7 x+3+4 x+5 y+10$
21) $9 x+6 y+4+2 x+y+2$
22) $x+5+6 x$
23) $3.2 x+5+6.8 x$
24) $4 x+4.2+5 x+2.6$
25) $\frac{2}{5} x+7 y+\frac{3}{10} x+10 y$

Simplify the following expression: $\quad 3 x+5 y-2 x-8 y$
Step 1: Draw a shape around like terms $3 x+5 y-2 x-8 y$

Be sure to take the sign in front of the coefficient!!!

Step 2: Use your integer rules to combine (add) the like terms.
Same signs add and keep,
Different signs subtract.
Keep the sign of the higher number,
Then you'll be exact!! :

X's	Y's
$3 x$	$5 y$
$+-2 x$	$+-8 y$
$1 x$	$-3 y$

$=1 \mathrm{x}-3 \mathrm{y}$
Step 3: Use the sign in your second term as your plus or minus sign.

Examples: Simplify Each Expression

1) $7 x-2 x$
2) $-3 y-4 y$
3) $6 x+3-4 x+5$
4) $10 s+4 t-5 s-2 t$
5) $4 y-3+2 y-2$
6) $7 x-9+3 x$

Try These: Simplify Each Expression
7) $7 x+5-7 x-9$
8) $6 x+8 y-9 x-2 y$
9) $5 x+7 y-5 y-5 x$
10) $8 x+9 y-4+x-6 y-3$
11) $4 x+9 y-5 y+3 x$
12) $6.2 y-5.6 x+y$

Simplify each expression:

1) $5 x-2 x$
2) $-4 y-6 y$
3) $7 x+4 y+x-8 y$
4) $6 x+8-2 x+5$
5) $9 y-7+2 y-2$
6) $5 x-9+2 x+9$
7) $-9 x+5-7 x-7$
8) $6 x+5 y-6 x-2 y$
9) $-10 s+4 t-s-9 t$
10) $-4 x+4 x$
11) $8 y-4-7$
12) $-x-5+6 x$
13) $7.2 x-5+3.6 x+6$
14) Write an expression with a sum of $-5 x+4$.
15) Find the perimeter:

Lesson 3

Distributive Property

The Distributive Property is one of the basic properties of the real number system.
To distribute something means to hand it out. If you distribute a test paper to your class, you give a test to each person in the class.

The Distributive Property says that if a, b, and c are real numbers, then:

$$
\begin{aligned}
\mathbf{a}(\mathbf{b}+\mathbf{c}) & =(\mathbf{a} \bullet \mathbf{b})+(\mathbf{a} \bullet \mathbf{c}) \\
& =\mathbf{a b}+\mathbf{a c}
\end{aligned}
$$

To "simplify" this, we have to remove the parentheses. The Distributive Property says to multiply the outside number to everything inside the parentheses. Draw arrows as a reminder.

Example 1: Simplify $3(x+4)$
Example 2: Simplify $-3(x+4)$

$3(x)+3(4)$
$-3(x)+-3(4)$
$3 x+12$
$-3 x+-12$ or $-3 x-12$

Examples: Distribute

1) $4(2 x-1)$
2) $6(x+3)$
3) $5(3 x-4)$
4) $3(8 x+2)$
5) $2(-4 x-3)$
6) $-5(6 x+3)$
7) $-(2 x-5)$
8) $(4 x+1) 3$
9) $\frac{1}{2}(4 x+6)$
10) $\frac{1}{5}(10 x-15)$
11) Find the area of the following:

Try These:

1) $2(3 x+2)$
2) $4(5 x-4)$
3) $3(6 x+7)$
4) $-4(x-4)$
5) $5(-6 x+2)$
6) $-3(x-5)$
7) $5(-2 x-6)$
8) $-(5 x+4)$
9) $-2(4 x-3)$
10) $-6(2 x-3)$
11) $\frac{1}{3}(9 x+12)$
12) $\frac{1}{4}(16 x-4)$
13)Find the area of the following:

Classwork:

1) $3(4+3 y)$
2) $-2(6 x-8)$
3) $4(x+5)$
4) $-(-2-5 n)$
5) $\frac{1}{2}(8 n+2)$
6) $-2(3 x+1)$
7) Find the area of the following:

8) Find the area of the following:

9) $-4(x+3)$
10) $2(x-5)$
11) $-3(x+6)$
12) $-(-x+7)$
13) $9(-x-2)$
14) $5(3 x-4)$
15) $\frac{1}{3}(6 x+15)$
16) $-10(a-5)$
17) Find the area of the following:

18) Find the area of the following:

$6 x+2$

Review:

Identify the Variable, Coefficient and Constant in Each of the Following:
11) $2 a+6$
Variable: \qquad Coefficient: \qquad Constant: \qquad
12) $x+12$
Variable: \qquad Coefficient: \qquad
Constant: \qquad
13) $-z+1$
Variable: \qquad Coefficient: \qquad
Constant: \qquad

Classify Each of the Following as Monomials, Binomials, or Trinomials:
14) $14 x-2 x$
15) $3 x+4 y$
16) $5 x$
17) $3 x+2 y-2 z$
18) $3 x y z$

Simplify the following expression
19) $6 x+4 y+7 x+y$
20) $9 x-7 y-2 x+9 y$
21) $7 x+5 y-7 x-8 y$

Example:

Step 1: Box out the distributive property (Be sure to take the sign in front)

Step 2: Bring down everything outside the box Step 3: Distribute
Step 4: Combine Like Terms

$$
2(3 x+5)+4
$$

Answer: $\quad 6 x+14$

Remember: You must distribute first before you combine like terms!
Examples: Simplify each expression:

1) $4(2 x+3)+6 x$
2) $8(x-5)+20$
3) $-(x+7)+8 x$
4) $3+2(2 x+6)+x$
5) $5 x+3(2 x-6)+1$
6) $2(3 x-4)+4-9$
7) $3(5+4 x)+12 x$
8) $9 x+5(-3 x-5)$

Try These: Simplify Each Expression

1) $2(3 x+1)+4 x$
2) $-5(2 x+4)+10$
3) $-(x+4)+7 x$
4) $7-3(x+9)$
5) $5 x+3(2 x-6)+1$
6) $6(3 x-4)-15 x$
7) $9+\frac{1}{2}(2 x+4)$
8) $5 x-3(x-4)+6$

Simplify.

1) $4 x+2(3 x+4)$
2) $-5(x+8)-12$
3) $-(x+3)+5 x$
4) $8-9(x+4)$
5) $8 x+4(2 x-5)$
6) $\frac{1}{2}(4 x-4)+4 x$
7) $6(5-2 x)-20$
8) $10 x+4(-3 x-5)$
9) $6 x+3(x-7)$
10) $\frac{1}{2}(6 x-4)-5 x$
11) $-(6+2 x)-12$
12) $7 x-(-3 x-5)$
13) $3(3 x-5)+6 x$
14) $2(4-2 x)+4 x-8$
15) $-2(5+2 x)+12 x$
16) $-10 x+4(-8 x-2)$

Lesson 5:

Greatest Common Factors (GCF)
Do Now: Find the prime factors using prime factorization.

1) 30
2) 45
3) 14
4) 49

Vocabulary:

Factors - \qquad
Prime - \qquad
Composite - \qquad
Greatest Common Factors (GCF) - \qquad

Finding the Greatest Common Factor (GCF)

$\underline{\text { Method } 1}$	(List the factors)
30 and 45	GCF=___
$\frac{45}{30}$	

Method 2 (Prime Factorization)
$30 \quad 45$

Finding GCF using Prime Factorization

1. List the prime factors of each number.
2. Multiply the factors both numbers have in common. If there are no common prime factors, the GCF is 1 (relatively prime).

Prime factors of 30 and 45 in common \qquad

Find the Greatest Common Factors using prime factorization method if necessary.

1) $\quad 18$ and 24
2) 12 and 8
3) 99 and 18
4) $\frac{8}{5}$ and $1 \frac{4}{5}$
5) 8 and 4
6) 15 and 10
7) 6 and 9
8) $\frac{1}{2}$ and $4 \frac{1}{4}$

Try These:
Find the GCF of the numbers given:

1) 16 and 28
2) 30 and 24
3) 8 and 16
4) 5 and 20
5) 24 and 36
6) 12 and 15
7) 30 and 40
8) 35 and 49
9) 21 and 7
10) 6 and 12
11) $\frac{2}{3}$ and $2 \frac{2}{3}$
12) $\frac{12}{7}$ and $1 \frac{1}{7}$

Determine if the following numbers are prime, composite or neither.

1) 33
2) 23
3) 3
4) 7
5) 49
6) 18
7) 1

Find the GCF using prime factorization if necessary.
8) 15 and 10
9) 9 and 12
10) 2 and 6
11) 30 and 42
12) 36 and 144
13) 8 and 24
14) $\frac{4}{3}$ and $4 \frac{2}{3}$
15) $1 \frac{3}{5}$ and $\frac{6}{5}$

Do Now:

Find GCF of each set of numbers:

1) 10 and 25
2) 10 and 18
3) 24 and 36
4) 20 and 40
5) $\frac{4}{5}$ and $\frac{8}{5}$

Vocabulary:

Greatest Common Factor (GCF): \qquad

Factoring: \qquad

Factoring Steps:

1. Find the GCF of all terms
2. Write the GCF outside of the set of parentheses
3. Divide each term by the GCF

Examples:

Factor: $\quad 6 x+9$

$$
5 x-15
$$

Factor:

6) $10 x+25$
7) $7 x+14$
8) $16 x-12$
9) $30 x+45$
10) $24 x-32$
11) $10-18 x$
12) $15 x-25$
13) $3 x-3$
14)

$$
\frac{2}{5} x+\frac{4}{5}
$$

$$
\frac{2}{3} x-\frac{4}{3}
$$

Find the missing side of the rectangle given the area:
16) Area $=12 x+9$
17) Area $=18 x-45$

9

Try These:

Factor:

1) $4 x+6$
2) $18-9 x$
3) $8 x-10$
4) $15 x+20$
5) $2 x-5$
6) $24 x-32$
7) $12 x-48$
8) $10 x-10$
9) $\frac{3}{5} x+\frac{6}{5}$
10) $\frac{6}{7} x-1 \frac{2}{7}$
11) Area $=21 x+28$
7

Factor:

1) $8 x-8$
2) $10-6 x$
3) $4 x-16$
4) $9 x+12$
5) $5 x-10$
6) $12 x+12$
7) $\frac{5}{6} x-\frac{10}{6}$
8) $\frac{2}{3} x+2 \frac{2}{3}$

Find the missing side of the rectangle given the area:
9) \quad Area $=81 x+18$
10) Area $=25 x-40$

$9 x+2$

$4 x-2$
12) Area $=18 x+81$

9

Lesson 7

Adding and Subtracting Expressions
Example 1: What is the sum of $\left(6 x^{2}+5 x-3\right)+\left(x^{2}-9\right)$?
Rewrite the expressions clearing the parentheses.
Then combine like terms.

$$
6 \mathrm{x}^{2}+5 \mathrm{x}-9+1 \mathrm{x}^{2}-9=7 x^{2}+\mathbf{5 x}-\mathbf{1 2}
$$

Example 2: Find the difference of $(3 p-5)-(p+4)$.
We need to distribute the negative (-1) to the second expression to clear the parentheses.
Then combine like terms.
$(3 p-5)-(p+4)=3 p-5-1 p-4=2 \mathbf{p}-\mathbf{9}$

Examples:

1) $(4 p+2)+(p-9)$
2) $\left(2 x^{2}+5 x+7\right)+\left(3 x^{2}-4 x-1\right)$
3) $\left(4 x^{2}+2 x+4\right)-\left(3 x^{2}-x+6\right)$
4) Subtract $8 x+10$ from $14 x+15$.

Try These:

5) $(10 x-4)+(x-2)$
6) $\left(4 x^{2}-6\right)-\left(2 x^{2}+1\right)$
7) $(4 x+4)+(-5 x+1)$
8) $\left(x^{2}+8 x-5\right)+\left(3 x^{2}-4 x-7\right)$
9) $\left(2 x^{2}-4 x+1\right)-\left(3 x^{2}+8 x-9\right)$
10) Subtract $2 x+3$ from $6 x-1$

Simplify the following expressions:

1) $(5 x+1)+(-2 x-3)$
2) $(8 x-2)-(-4 x+1)$
3) $\left(6 x^{2}+2 x+9\right)+\left(x^{2}-4 x-12\right)$
4) $\left(x^{2}-5 x+13\right)-\left(4 x^{2}-5 x-7\right)$
5) $\left(7 x^{2}+x-4\right)+\left(11 x^{2}-8 x+5\right)$
6) Subtract $12 x+5$ from $10 x-2$.
7) Subtract $4 x^{2}+9 x$ from $2 x^{2}+3 x$
8) Katy wants to simplify the subtraction expression shown below:

$$
\left(2 m n-5 m^{2}\right)-\left(4 n^{2}+3 m n-m 2\right)
$$

Which of the following expressions is equivalent to this subtraction expression?
A $2 m n-5 m^{2}-4 \mathrm{n}^{2}+3 m n-m^{2}$
B $2 m n-5 m^{2}-4 \mathrm{n}^{2}-3 m n+m^{2}$
C $-2 m n+5 m^{2}-4 \mathrm{n}^{2}+3 m n+m^{2}$
D $-2 m n+5 m^{2}-4 n^{2}-3 m n+m^{2}$
9) What is the sum of the expression below?

$$
(8 p+q+5)+(p+q-7)
$$

A $8 p+q+2$
B $8 p+q-2$
C $9 p+q-2$
D $9 p+2 q-2$
10) What is the GCF of $45 x^{2}+18$?
A 6
B 9
C 18
D 45
11) Which expression has a GCF of 6 ?
A $6 w^{2}+8$
B $12 w^{2}-3$
C $24 w^{2}+36$
D $30 w^{2}-18$

Addition Phrases	Expression	Subtraction Phrases	Expression
*8 more than a number The sum of a number and 8 x plus 8 x increased by 8	$\mathrm{x}+8$	*6 less than a number *6 subtracted from a number r The difference of r and 6 r minus 6 r decreased by 6	$\mathrm{r}-6$
Multiplication Phrases	Expression	Division Phrases	Expression
4 multiplied by n 4 times a number The product of 4 and n	4 n	A number divided by 3 The quotient of z and 3 The ratio of z and 3	$\frac{z}{3}$

Examples: Write each verbal phrase as an algebraic expression

1) The sum of 8 and x
2) The quotient of g and 15
3) The product of 5 and b
4) p increased by 10
5) 14 less than f
6) The difference of 32 and x
7) Twice Sue's height
8) Four times John's score
9) Eight less than Amy's shoe size
10) The taxi fare of $\$.50$ for each mile
11) 5 more than 3 times a number
12) The quotient of 5 and x decreased by 8
13) A cab ride has a flat fee of $\$ 3$ plus $\$ 0.50$ per mile. Write an expression to represent this situation.
14) The cost of 7 CDs at $\$ d$ each
15) A number divided by 5
16) The total of Ben's score and 75
17) 2 hours more than the estimated time
18) 14 more than s
19) $\$ 500$ less than the sticker price
20) 25 times the number of students
21) The score increased by 8 points
22) The cost split among 4 people
23) 8 less than the product of 10 and x
24) The quotient of x and 4 plus 12
25) A plumber charges a flat rate of $\$ 50$ plus $\$ 25$ for each additional hour. Write an expression to represent this situation.
26) You watch x minutes of television on Monday, the same amount on Wednesday, and 30 minutes on Friday. Express the situation in simplest form.
27) Colleen and her friends paid a total of $\$ 7$ for tickets to the school football game. While at the game, they bought 5 hotdogs at x dollars each, 4 boxes of popcorn at y dollars each, and 2 pretzels at z dollars each.
a) Write an expression to show the total cost of admission and the snacks.
b) Hot dogs cost $\$ 4$, popcorn cost $\$ 3$, and pretzels cost $\$ 2$. What was the total cost for admission and snacks?

Write each verbal phrase as an algebraic expression.

1) The number divided by 5
2) The sum of x and 7
3) The product of 10 and c
4) 6 less than x
5) Twice y
6) The difference of t and 1
7) 17 more than a number x
8) The quotient of z and 10
9) The number of members divided by 5
10) The total area decreased by 75 sq ft
11) Sue's height plus 2 inches
12) Five increased by a number
13) The quotient of x and 5
14) Seven less than y
15) 10 increased by 2 times a number
16) The product of 3 and a number minus 4
17) A carnival has an entrance fee of $\$ 10$ plus $\$ 2$ for each ride. Write an expression to represent this situation.

Lesson 1:
Define the following AND give an example of each:
Monomial: \qquad

Binomial:
Trinomial: \qquad

Polynomial:

State the operation represented by each:

Sum: \qquad Product: \qquad Quotient: \qquad Difference: \qquad

1) $5 x^{3}+4 \quad x$ is the \qquad 5 is the \qquad 3 is the \qquad 4 is the \qquad
2) Classify the following expressions as a Monomial, Binomial or Trinomial.
a) $9 x+3 y$
b) $10 x z$
c) -2
d) 7
e) $15 a b c$
f) $14 x+4 y-3$
3) State whether the given terms are like terms or not like terms.
a) $8 a$ and $-4 a$
b) 12 and 3
c) $12 x y$ and $2 x z$
d) $3 x$ and x
e) $4 x$ and 4

Simplify each expression.
4) $2 x+x$
5) $8 y+4+7$
6) $3 x+5 y$
7) $x+3+x+15$
8) $5.6 x+2+9.1 x$
9) Find the perimeter

6

Lesson 2: Simplify each expression.
10) $-8 x+8 x$
11) $4 y-10 y+y$
12) $-\frac{1}{3} x+9-3 \frac{4}{9} x+10$
13) $-3.9 x+2+4.5 x$

Lesson 3: Simplify each expression.
14) $3(5 x+1)$
15) $-2(3 x-2)$
16) $-(7 x+4)$
17) $(-x+2) 3$
18) $-(8 x+9)$
$\begin{array}{llll}\text { 19) } \frac{1}{3}(12 x-6) & \text { 20) } \frac{1}{2}(20 x+10) & \text { 21) } \frac{1}{5}(20 x+15) & \text { 22) Find the area }\end{array}$

Lesson 5 and 6:
Find the GCF of the numbers given:
22) 20 and 28
23) 16 and 32
24) 40and 45

Factor:
25) $8 x+10$
26) $12-16 x$
27) $25 x+30$
28) $10 x+50$
29) $3 x-9$

Lesson 4 and 7: Simplify
30) $5 x+4(2 x+7)$
31) $-(x-5)+4 x$
32) $(3 x+10)+(5 x-4)$
33) $(5 x-14)-(2 x+6)$
34) $(x+8)-(-2 x-7)$

Lesson 8: Translate each expression
35) The difference of x and 4
36) The quotient of a number (n) and 15 37) 5 decreased by y
38) The product of 32 and $x \quad$ 39) 5 more than twice a number 40) Six times the sum of x and 3
41) Four less than five times a number (x).
42) $\$ 20$ divided among (x) students.
43) 30 less than five times x.
44) A painter charges a flat rate of $\$ 100$ plus $\$ 20$ for each hour of work. Write an expression to represent this situation.
45) The aquarium charges a $\$ 30$ entrance fee plus $\$ 10$ for each additional activity. Write an expression to represent this situation.

Review: Simplify
46) $-1+10$
47) $-5-9$
48) $20 \div 2 \cdot 5$
49) $\frac{(10 \div 2)}{4^{2}-14}$
50) $4 \cdot-5$
51) $1.2 \cdot 3$

Unit 4

Equations

	Date	Lesson	
		1	One-Step Equations
		2	Two-Step Equations
		3	Two-Step Equations - Day 2
		4	Combine Like Terms \& Solve
		5	Combine Like Terms with Negatives
		6	Solving with Distribution
			Quiz (Lessons 1-5)
		7	Solving with Distribution of Negatives
		8	Equations with Decimals
		9	Equations with Fractions
		10	Translate and Solve
			Review
			Test

Lesson 1

One-Step Equations

Vocabulary

Inverse Operations: \qquad
*Remember, whatever you to do one side of an equation \qquad -

Rules:

1)
2)
3)
4)

Examples:

1) $x+3=4$
check
2) $h-18=25$
check
3) $3 m=27$
check
4) $\frac{x}{2}=15$
check
5) $6=x+2$
check
6) $12+x=-10$
check
7) $-5 x=40$
check
8) $\mathrm{b}-3=-7$
check

Try These: (show all work)

1) $x-3=12$
2) $4 t=16$
3) $n+6=6$
4) $8=k+7$
5) $e-9=10$
6) $12=p+30$
7) $y+16=26$
8) $5+r=10$
9) $9+w=19$
10) $-6 x=36$
11) $s+6=4$
12) $5=d+10$
13) $n-12=-8$
14) $b+44=-7$
15) $b+7=6$
16) $d-22=45$
17) $r+88=333$
18) $m+736=542$
19) $t-121=-111$
20) $k-88=-68$

Solve for x : (show all work)

1) $g-10=12$
2) $\frac{x}{7}=3$
3) $w+21=50$
4) $18=j+9$
5) $m-10=-5$
6) $14=n+7$
7) $c-7=-12$
8) $x+4=-10$
9) $p+15=-5$
10) $5 m=25$
11) $n-12=-36$
12) $g+55=11$
13) $f+77=-75$
14) $789-m=7$
15) $w+97=132$
16) $q+33=-30$
17) $444-j=258$
18) $h=47+b$
19) $a+745=-55$
20) $s-4654=477$

Vocabulary:

Inverse Operations - \qquad
*Remember, whatever you to do one side of an equation \qquad .

Rules:

1) \qquad
2) \qquad
3)
4) \qquad

Examples:

1) $2 x+4=8$
2) check \#1
3) $7+2 x=9$
4) $\frac{x}{2}+5=13$
5) $2 x+2=8$
6) check \#5
7) $5+2 x=11$
8) $4-x=12$

Try These:

1) $3 x-8=-32$
2) check \#1
3) $-5 x+5=-45$
4) $\frac{x}{-5}+2=12$
5) $2 x+4=26$
6) check \#5
7) $\frac{x}{5}+2=12$
8) $\frac{x}{2}-7=8$
9) $3 x+5=38$
10) check \#9
11) $2 x+30=50$
12) $5 x-7=52$
13) $-5 x+20=55$
14) check \#13
15) $\frac{x}{10}-3=-7$
16) $\frac{x}{9}-3=-1$
17) $\frac{x}{3}+6=2$
18) check \# 17
19) $6 x+6=12$
20) $3 x-10=11$

Lesson 2 - Homework

1) $3 x+2=26$
2) check \#1
3) $\frac{x}{5}+2=7$
4) $\frac{x}{2}-7=7$
5) $7 x-5=44$
6) check \#5
7) $2 x+30=-100$
8) $10 x-14=104$
9) $-7 x+20=55$
10) check \# 9
11) $\frac{x}{10}-10=10$
12) $\frac{x}{9}-3=0$
13) $\frac{x}{3}+1=2$
14) check \#13
15) $\frac{x}{6}+7=-5$
16) $\frac{x}{-2}-6=3$

Examples: (show all work)

1) $2 x+4=8$
2) $4 y+3=15$
3) $5-2 x=9$
4) $\frac{x}{2}+5=17$

Check:
Check:
Check:
Check:

Try These: (show all work)

1) $2 x-2=12$
2) $3 x-12=12$
3) $5 x+6=21$
4) $\frac{x}{3}+7=16$
5) $-x-9=10$
6) $-7 x+2=-19$
7) $4 x+10=26$
8) $4+3 x=13$
9) $9-5 x=19$
10) $3 x-17=10$
11) $\frac{x}{5}+10=15$
12) $-11=3 x+10$
13) $\frac{x}{2}-3=-11$
14) $2 x-1=-1$
15) $9 x+7=-11$
16) $3 x+8=-10$
17) $-5=2 x-15$
18) $2-\frac{x}{8}=0$
19) $\frac{x}{6}-1=7$
20) $-x-12=-8$

Lesson 3 - Homework (1.5 pages)

1) $4 x-4=12$
2) $2 x-12=10$
3) $3 x+4=25$
4) $\frac{x}{3}+6=10$
5) $-x-15=10$
6) $10=-2 x+6$
7) $-2 x+12=-26$
8) $14+10 x=4$
9) $-y+7=11$
10) $3 x-12=6$
11) $\frac{x}{5}+15=15$
12) $-3=3 x-30$
13) $5 x-3=-13$
14) $2 x+1=-5$
15) $9 x+8=71$
16) $2 x-8=-6$

Review \& Simplify the following:

17) $\frac{1}{3}\left(4+3^{2}-1\right)$
18) $7 a+2 a+a$
19) What is the constant of $3 x-1$?
20) $12-(-5)$
21) $12-|-5|$
22) $2 \frac{3}{7} \div 3 \frac{1}{2}$
23) The lowest temperature ever recorded in New York City was -15 degrees Fahrenheit on
February 9, 1934. The highest temperature recorded was set as high as $106^{\circ} \mathrm{F}$ on July 9,1936 in Central Park.
What is the difference between these two temperatures?

Lesson 4

What are some important things to remember when we are combining like terms?

- Must have the same Variable and Exponent
- Make sure you include the sign.

Review

1) Can we combine 2 d and 8 d ? \qquad Why? \qquad
2) Can we combine 2 and $8 d$? \qquad Why? \qquad

Steps to Success

Step 1: Make a shape around the terms that have the same variable.

It is super important that you take the sign in front of the coefficient!

When there are like terms on the same side of an equation, you must combine them first!!

Examples:

1) $3 x+4 x=49$	2) $9 x+x=60$	$3) 6 x-3 x=18$	4) $4 x+x=25$
5) $8 x-3 x+15=45$	6) $3 x-7=-5-8$	7) $4 x+20=50-10$	8) $\frac{x}{10}+3=2-4$

Try These:

1) $2 x+4=5+9$	2) $2 x+5 x-4=17$	3) $2 x+6+x=36$	4) $3 x-7=10+4$
5) $\frac{x}{5}+2=10+2$	6) $\frac{x}{2}-7=4+4$	7) $4 x+5+x=55$	8) $\frac{x}{9}-3=1+2$
9) $2 x+3 x=25$	10) $7 x-x=24$	11) $5 x-2 x=18$	12) $9 x-x=16$

13) $-2 x+3+3 x=34+4$
14) $2 x-14+5 x=20+1$
15) $8 x+5+3 x=45+4$

Solve for x :

1) $2 x+x=27$
2) $7 x+2 x=45$
3) $5 x+2 x=56$
4) $3 x+x=16$
5) $9 x+2 x+16=38$
6) $2 x+4 x-5=13$
7) $4 x+10+x=35$
8) $3 x+8+x=48$
9) $-5 x+3=2-9$
10) $-5 x+7=5+12$
11) $7 x+20=65-10$
12) $9 x-7=11+9$
13) $\frac{x}{5}+3=19-6$
14) $\frac{x}{3}+7=-1-4$
15) $-6 x+3-2 x=59$
16) $9 x-19+x=21$

Review

20) Translate: A number m less than a number h

Find the perimeter: \qquad 21) $9(3-2 \cdot 4)$

Lesson 5

What are some important things to remember when we are combining like terms?

- Must have the same Variable and Exponent
- Make sure you include the sign.
When there are like terms on the same side of an equation, you must combine them first

Examples:

1) $-21 x-6 x=54$
2) $5 y-10 y+6 y=22$
3) $m-9 m+6 m-7 m=-72$

Try These:

1) $-7 p+-3 p=200$
2) $9 k-15 k+2 k=16$
3) $15 y-10 y+3 y=-64$
4) $14 x-10 x-7 x+x=44$
5) $12 y+8 y-25 y=-40$
6) $16 y+18 y-10 y+2 y=78$
7) $-27=2 x-7-6 x$
8) $-8 x-8-x=5+5$
9) $3 x-4 x-3=18$
10) $3 x-5 x+16=32$
11) $2 x-4 x-6=18$
12) $2 x+3-3 x=34+4$

Lesson 5 - Homework

Solve:

1) $-20=-4 x-6 x$
2) $6=1-2 n+5$
3) $-2=-9+7 x-8 x$
4) $a-5 a+5=21$
5) $8 m-6-14 m=-42$
6) $-1=4 p+3 p-8$
7) $-3 x=-12-6$
8) $14=-p+8$
9) $-7+4 x=9$
10) $5 p-8 p=4+14$
11) $-4=-9+p-6 p$
12) $2 x-3 x=55-3$
13) $-5=-48-40 n-3 n$
14) $-1-7 x+42+x=36$
15) $-12 x-9+24 x=39$

Steps:

1. Distribute (If possible)

2. Combine Like Terms on Each Side
3. Isolate The Variable (Inverse Operations)

Examples:

1) $3(2 x+4)=60$
2) $30=2(x+5)$
3) $2+2(x-4)=14$
4) $2(5-2 x)=21$
5) $3+2(3 x-10)=7$
6) $3(x-7)=9$
7) $5(2 x-5)=55$
8) $2(2 x+4)=20$
9) $3(x+2)=27$
10) $7(2 x-5)=35$
11) $4(x+5)=40$
12) $5(2 x+6)=40$

Try These:
13) $8+2(x+5)=16$
14) $3(x+3)=21$
15) $2+3(6-5 x)=50$
16) $30=2(x+5)$
17) $9=2(x-3)$
18) $3(x-3)=6$
19) $2(4 x+1)=14$
20) $2(5 x+4)=48$
21) $60=3(x+9)$
22) $3(4 x+2)=30$
23) $4(x+2)=24$
24) $54=6(2 x+1)$

Solve:

1) $6(2 x+4)=60$
2) $60=4(x+5)$
3) $14+4(5-2 x)=50$
4) $6(x-3)=12$
5) $6+4(3 x-10)=14$
6) $5(x-7)=10$
7) $-20=2(x+5)$
8) $2(x+5)=0$
9) $4(x+2)=28$
10) $45=3(2 x-5)$
11) $2(x+5)=20$
12) $40=4(2 x+6)$
13) $16+4(x+5)=32$
14) $6(x+3)=42$
15) $4+6(6-5 x)=100 \quad 16) \quad 12=4(x+8)$

REVIEW:

17) $3 x+9+x=49$
18) $50=10 x-x+23$
19) $-24=6 x-15-5 x-1$

Steps:

1. Distribute (If possible)
2. Combine Like Terms on Each Side
3. Isolate The Variable (Inverse Operations)

Examples:

1) $2(x+5)=26$
2) $-21=-7(x-3)$
3) $-5(x+4)=45$
4) $-(x-3)=-7$
5) $22=2(3 x-10)$
6) $-3(6 x-4)=-24$
7) $110=10(2 x-5)$
8) $-4(2 x+4)=40$
9) $2(x+2)=14$
10) $-3(4 x-5)=39$
11) $-4(x+5)=40$
12) $80=5(2 x+6)$

Try These:

13) $8=-2(x+2)$
14) $-3(x+3)=21$
15) $60=-3(x-4)$
16) $-2(x-3)=20$
17) $-(x+4)=10$
18) $-(x-3)=7$
19) $-2(4 x+1)=14$
20) $-3(2 x+2)=6$
21) $3(2 x-4)=-24$
22) $-4(2 x+6)=16$
23) $4(x-2)=-20$
24) $-(8 x-2)=18$

Solve:

1) $-2(x+3)=10$
2) $25=-5(x+2)$
3) $-3(x-2)=27$
4) $28=-7(x-2)$
5) $8=-(x+2)$
6) $-(-3 x-2)=11$
7) $-2(3 x+2)=2$
8) $-5=-5(x-3)$
9) $-2(x+8)=44$
10) $30=5(x-4)$
11) $-3(x+4)=27$
12) $9(x-2)=9$
13) $5(2 x-4)=20$
14) $24=3(2 x-4)$
15) $5(2 x-5)=65$
16) $-6=-2(x+2)$

Review:

17) $x+4 x=35$
18) $4 x+8=10+18$
19) $7 x+5=61$
20) $\frac{x}{3}-2=10$
21) $6 x+4+x=53$
22) $3(x+4)=48$
23) $4(5 x-2)=32$
24) $2(2 x+4)=24$

Lesson 8

Equations with Decimals
Steps:

1. Distribute (If possible)
2. Combine Like Terms on Each Side
3. Isolate The Variable (Inverse Operations)

Examples:

1) $2.5+x=10.5$
2). $.5 x+2 x-4=6$
2) $10.6=x-7.4$
3) $.5+.2 x=.9$
4) $4.5+x=12$
5) $.9-10 x=-9.1$
6) $\cdot 3 x=9$
7) $.23 x+.37 x-.1 x=.2-.41$
8) $-20=.2(10 x-30)$

Try These:

10) $z+1.25=-9.54$
11) $c-14.59=-88.22$
12) $14.9-x=15.1$
13) $2 t+9.4=39.8$
14) $3.25 k+5.75 k=72$
15) $7 a=1.4$
16) $.5(2 x+3)=4.5$
17) $3 x=-2.4$
18) $\cdot 25(12 x+8)=17$
19) $9-79.2=x$
20) $-1.30+v=-9.3$
21) $b+4=25.65$
22) $n-14=-7.7$
23) $q+11.25=5.3$
24) $-.4 x=16$
25) $3 y+13.6=40.6$
26) $g-1.68=-34.44$
27) $.5 x+2 x-4=6$
28) $138.75=9.25(-6+t)$
29) $21=.5(4 x+6)$
30) $-.2(10 x-15)=9$

Review:

13) Sal did the following work:

Explain his error.
$9 y-2+4 y$
$9 y-4 y+2$
$5 y+2$
15) $\$ 25.99-\$ 217.47$

Lesson 9

Equations with Fractions

Examples:

1) $j-\frac{3}{5}=\frac{1}{5}$
2) $h-\frac{3}{8}=\frac{1}{8}$
3) $g+\frac{1}{9}=\frac{4}{9}$
4) $\frac{5}{6} x-\frac{1}{6} x=8$
5) $50=\frac{2}{3}(3 x+6)$
6) $54=\frac{2}{3}(6 x-9)$
7) $\frac{1}{2}(2 x+2)=48$
8) $\frac{1}{3}(9 x-12)=-25$

Try These:

1) $\frac{5}{8}+x=\frac{3}{4}$
2) $h+\frac{15}{25}=\frac{13}{50}$
3) $x-\frac{30}{40}=\frac{5}{20}$
4) $2 x+\frac{1}{4}=\frac{1}{8}$
5) $\frac{1}{4}(12 x+8)=17$
6) $-20=\frac{1}{5}(10 x-30)$
7) $\frac{1}{6}(6 x-18)=-4$
8) $20=\frac{1}{2}(4 x+8)$
9) $\frac{2}{3}(6 x+9)=22$
10) $24=\frac{3}{5}(5 x+10)$
11) $\frac{1}{3}(3 x-6)=9$
12) $-\frac{1}{5}(10 x-15)=9$
13) $f+\frac{1}{7}=-\frac{1}{7}$
14) $x+\frac{6}{15}=\frac{5}{15}$
15) $\frac{2}{3} y-\frac{1}{3} y=33$
16) $m-\frac{3}{4}=\frac{1}{2}$
17) $\frac{1}{2}=d+\frac{5}{12}$
18) $\frac{1}{4}+p=\frac{3}{20}$
19) $\frac{1}{4} y+\frac{1}{3}=\frac{1}{12}$
20) $k-\frac{4}{7}=\frac{1}{4}$
21) $\frac{1}{3}(3 x-6)=9$
22) $21=\frac{1}{2}(4 x+6)$
23) $-(x-7)=12$
24) $-\frac{1}{5}(10 x-15)=9$
25) Drew made fruit punch for 12 people. The punch contains sparkling water and $\frac{2}{3}$ of a pint of fruit juice per person. If there are $10 \frac{2}{5}$ pints of fruit punch, how many pints of sparkling water did Drew add per person?

Review

Write and solve an equation for each:
14) A tile man is laying an 84 inch border using 12 inch tiles. How many tiles would need to be placed?
15) Student Government sold 175 bags of popcorn at the dance. If they made $\$ 306.25$, how much was the cost of each bag of popcorn?

Vocabulary for each operation

+	-	\times	\div

Switch Words
Translate each sentence into an equation, and then solve the equation.

1) Six more than a number is 12 .
2) Three times a number is 21 .
3) Seven less than a number is 20 .
4) Five more than twice a number is 7 .
5) Six less than half of a number is 12 .
6) The product of a number and three-fourths is 12 .
7) Six more than four times a number is -9
8) The difference between 12 and ten times a number is 52 .
9) Eleven less than 5 times a number is $24 . \quad 2$) The quotient of a number and -9 increased by 10 is 11 .
10) Fifteen more than twice a number is -23 . 4) Five less than the product of -3 and a number is -2 .
11) Nine more than -8 times a number is -7 . 6) The difference between 5 times a number and 4 is 16 .
12) Eleven less than five times a number is 19 . 8) Thirteen more than four times a number is -91 .
13) Three times half of a number is 21.
14) Twelve less than the quotient of a number and 8.4 is -9 .
15) While at the music store, Drew bought 5 CD's all at the same price. The tax on his purchase was $\$ 6$ and the total was $\$ 61$. Write an equation to represent this situation and solve.
16) A taxi service charges $\$ 1.50$ plus $\$ 0.60$ per minute for a trip to the airport. The total charge is $\$ 13.50$. How many minutes did the ride to the airport take?

7R Unit 4 Review Sheet

Solve and Check:

1) $2+x=10$
2) $x-7=3$
3) $-5 x=15$
4) $\frac{x}{4}=-10$
5) $-x=3$
6) $7 m+3=10$
7) $\frac{x}{7}-2=4$
8) $8 y+2=18$
9) $\frac{x}{3}-2=7$
10) $2 x+9 x=44$
11) $3 r+5 r=24$
12) $d+3+4 d=38$
13) $6 c+12=22+20$
14) $3(5 z-2)=24$
15) $2(3 x+2)=13+15$
16) $-(x+5)=16$
17) $-4(2 h+2)=16$
18) $5 y+3-y=-41$
19) $\frac{x}{3}-5+11=-12$
20) $\frac{1}{5}(5 x-15)=32$
21) $\frac{2}{3}(6 x-18)=16$
22) $0.5 x-1.5=8.5$
23) $-3.7-0.7 x=-5.8$
24) $3.2 x+1.8 x+4.2=15.2+4$
25) $\frac{5}{6} x-\frac{1}{6} x=8$
26) $7 x-(3 x-6)-2=-20$
27) $-10-2=\frac{1}{2}(4 x-4)-4 x$

Write and solve an equation for each:

28) Three times a number is 21.2 29) Seven less than a number is 20 .
29) Eleven less than five times c is 19 .
30) Thirteen more than four times a number is -91 .
31) Three times the sum of a number and 2 is 27.
32) Five less than the product of -3 and a number is -2 .
33) Nine more than -8 times a number is -7 .
34) Five more than twice a number is 7.
35) Sally loves to text her friends. Her cell phone company charges her $\$ 0.05$ per text. She has to pay a connection fee of $\$ 25$ a month. Sally can only afford to pay $\$ 40$ a month. What is the greatest number of texts she can send/receive per month?
36) Kelly is renting a car and is charged $\$ 120$ for the day plus $\$ 0.25$ for each mile driven. Write an equation of the situation. Find out how many miles can be driven if Kelly is going to pay $\$ 170$.
37) Mercury freezes at $-38^{\circ} \mathrm{F}$ and boils at $674^{\circ} \mathrm{F}$. Find the difference between the two temperatures.
38) Drew made fruit punch for 12 people. The punch contains sparkling water and $\frac{2}{3}$ of a pint of fruit juice per person. If there are $10 \frac{2}{5}$ pints of fruit punch, how many pints of sparkling water did Drew add per person?
39) Student Government sold 175 bags of popcorn at the dance. If they made $\$ 306.25$, how much was the cost of each bag of popcorn?
40) Evaluate the expression, if $r=5, s=7$, and $t=10$.

$$
3(r s)-t
$$

42) Simplify:
a) $7 x+9 x$
b) $-6 x-x$
c) $\frac{3}{5}+\frac{9}{10}$
d) $\frac{\frac{3}{4}}{\frac{7}{12}}$
43) $(13.55)(-2.6)$
44) $32.37+11.765$
45) $25.67-3.94$
46) $\frac{-24}{.3}$
